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Abstract: In relativistic quantum theory, for many problems of physical interest, exact solutions are not available even in one dimension. 
Therefore it is highly desirable to investigate and apply the methods of approximation which work in non-relativistic cases to relativistic 
conditions. In this article we extend the well-known Rayleigh-Ritz variational method used in non-relativistic quantum mechanics to 
relativistic case. To test the validity of the approach we apply the method to relativistic spin-less quantum particles under different 
potential conditions, such as free particle in an infinite well, charged particle in a coulomb potential and particle in an infinite range 
linear potential. The results are then compared with those of exact methods, comparison validates the method to a very good extent.  
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1. Introduction 
 
In relativistic quantum theory, for many problems of physical 
interest, exact solutions are not available even in one 
dimension. Therefore it is highly desirable to investigate and 
apply the methods of approximation which work in 
non-relativistic cases to relativistic conditions [1]. It is found 
that the extension of well-known non-relativistic 
approximations might be possible if the relativistic wave 
equations are reduced to Schrödinger like form. Several 
researchers have extended Rayleigh-Ritz Variational method 
for relativistic spin-half particles [2], [3], [4], [5], [6]. But 
Rayleigh-Ritz Variational method for relativistic spin-zero 
particles has not been done. In this article we discus 
relativistic approach to Variational method and apply the 
same to obtain approximate ground state eigenenergies of 
relativistic spin-less particles in certain well-known 
potentials.  
 
2. Review of Non Relativistic Rayleigh-Ritz 

Variational Method 
 
Variational principles are widely used in quantum 
mechanical problems [7]. We come across variational 
methods such as Hulthen, Schwinger, Rayleigh-Ritz principle 
etc,. Rayleigh-Ritz principle for estimation of ground state 
energy is one of the best known and widely used of all 
variational principles [8], the other variational principles 
mentioned above are used in scattering theory and also 
applicable elsewhere. Here in this section, we review 
Rayleigh-Ritz Principle to find ground state energy. 
 
Let ψ  be any stationary state of a system and E  be the 

corresponding expectation value of the Hamiltonian H . 
Therefore  

 E
H

=
ψψ
ψψ

〈
                   (1) 

 Let 0E  be the ground state of H . 

Expanding ψ  in a complete set of eigenfunctions of H  
as  
 nn

n
C φψ ∑=  

where nφ  obeys the equation 
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 Since the ground state energy 0E  is less than all the higher 
energy values, we have  
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 or  
 0EE ≥  

Thus the expectation value of H  gives an upper limit to the 
ground state energy eigenvalue, this is known as 
Rayleigh-Ritz principle. Generally, in order to obtain a good 
estimate of ,E  one chooses a trial wave function ( )αψ  
parametrized in terms of ,α  and evaluates the expectation 
value of H  for a family of states as  

 ( ) ( ) ( )
( ) ( )αψαψ

αψαψ
α

〈
H

E =                (4) 

 Then minimizing ( )αE  with respect to α  one can get an 
approximate value for ground state energy. 
Further, the improvement in the trial function could be done 
by numerical iterations to reduce the error between the 
approximate and exact value of ground state energy.  
 

Paper ID: 02015426 634



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 8, August 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

3. Extension of Rayleigh-Ritz Variational 
Method to find ground state eigenvalues of 
Relativistic spin-zero particles 

 
 In relativistic quantum mechanics, for a free particle with 
rest mass energy we can write  
 42222 = cmcPE +  
The general potential ( )xV  is introduced as fourth 
component of vector potential using minimal coupling 
scheme as [9] 
 
 ( )[ ] 42222 = cmcPxVE +−  
The corresponding wave equation in one dimension is  

 ( )[ ] ( ) ( )xcm
dx
dcxxVE ψψ 








+−− 42

2

2
222 =   (5) 

 The above equation could be reduced to Schrödinger form as  

 ( ) ( )xxV
dx
d

m
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 Where  
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The Hamiltonian  

 )(
2

= 2

22

xV
dx
d

m
H ffeffe +−


 

is hermitian as both the terms on right hand side of the above 
equation are hermitian. 
For weak potentials ffeV  will have the same sign as V . 
In order to get bound states one has to have condition [10]  
 ( ) 0.≤∫ dxxV ffe  

Thus we write 
 
 ( ) ( )xExH nnnffe ψψ =  

As ( )xnψ  are orthogonal, thus nE  are real. 
We follow the formal method of Rayleigh-Ritz principle as 
done in non relativistic case[11]. 
Let αψ  be a trial function with variational parameter α  
describing the system, that could be expanded in terms of 
complete orthonormal set as 
 
 nna ψψα ∑=  
Thus the expectation value of the Hamiltonian  
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= E
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 Hence  
 ( ) 0EE ffe ≥α  
Therefore ground state eigenenergy could be approximately 

obtained by minimizing ( )αffeE  with respect to 
variational parameter α .  
 
4. Relativistic free particle in an infinite square 

well potential 
 
Let us consider a non-relativistic particle of mass m  
moving in the one dimensional infinite square well defined by  
 axaVx <<for0= −  
 
 .|>|for= axVx ∞  
This problem could be solved exactly [11] to get the exact 
ground-state energy  

 2

2

2

22

0 1.23370=
8

=
mama

E  π
 

In relativistic approach, we take trial function as  
 ( ) ( )( )222 1= xxax αφ +−  (8) 

 Since the particle is free within the box, we can write 
0=ffeV  for axa <<−  

Therefore  
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 Substituting for ffeH  equation 9 becomes,  
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(10) 
 On evaluating the above integral we get,  
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 Minimizing ( )αffeE  with respect to variational 
parameter α , we write  

 ( )[ ] 0=α
α ffeE

d
d

 

This gives a quadratic equation in α  as, 
 
 0=4219626 224 ++ αα aa  
On solving the above equation, we get two different roots as  

 22

7.31771=,0.22075=
aa

−− αα  (12) 

 Taking 2

0.22075=
a

−α , the equation 11 becomes  

 ( ) 2

2

0 1.23372=
ma

E ffe
α  

Substituting for ffeE , we get  
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 Using binomial expansion [12]  
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(14) 
Thus it is clear that the first term is rest energy, the second 
term represents the approximate non relativistic upper bound 
for ground state energy, which is in very good agreement with 
exact value of ground state energy [11], and the third term 
represents the first order relativistic corrections to it 
neglecting contributions from higher order terms.  
 
5. Relativistic-spin less charged particle in a 

Coulomb potential 
 
In this section we consider a relativistic spin-less charged 
particle in a coulomb potential, we work out eigenenergy 
values for s  state, we compare our results with that of 
results obtained by formal method of solving Klein Gordon 
equation. 
For a non relativistic charged particle in a Coulomb potential 

( )
r
erV

2

= −  , we expect that the ground state wave 

function to have no angular momentum, no nodes, behave 
like 0r  as 0→r  and vanish as ∞→r . 
So we choose the trial function  

 ( ) rer ααφθψ −=,,,                (15) 
 Where α  is the variational parameter 
We find (upon ignoring angular variables),  
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 On evaluation of the above integral we get  

 ( ) ααα 2
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2
= e
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E −
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 Minimizing ( )αE  with respect α , 
We get  
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 Where  
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is called fine structure constant. 
Similarly for a relativistic charged particle in a Coulomb 

potential ( )
r
erV

2

= − , once again we expect that the 

ground state wave function to have no angular momentum, no 
nodes, behave like 0r  as 0→r  and vanish as ∞→r . 
Hence we choose the trial function  
 ( ) rer ααφθψ −=,,,  
Where α  is the variational parameter 
The effective potential thus takes the form 
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Thus, we find (upon ignoring angular variables)  
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 On evaluating the above integral we get,  
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 Minimizing ( )αffeE  with respect to variational 

parameter α , 
We write  

 ( )[ ] 0=α
α ffeE
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We get  

 422

2

0 2
=

ec
Ee
−

α  
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 Upon substituting  
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we get  
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Neglecting 42e  in comparison with 22c  , We get 

 [ ] 2
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22 1= −
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 Where  
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is the fine structure constant. 
 
The formal method of solving Klein Gordon equation for 
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Coulomb potential yield energy eigenvalues as [13], [14]  
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
+
λ
γmcE
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Where bound states exists only if 1= ++ sn
'

λ , in which 
'

n  is zero or positive integer and s  is a non negative 
solution of the radial equation. Since we have applied the 
relativistic variational approach to 0=l  state, we find an 
excellent agreement between equation 22 and equation 23. 
Expanding the expression 22 for the energy levels, we get the 
results to terms of 4γ  as,  

 







+− 4

2
2

8
3

2
1= γγmcE

            
 (24) 

The first term on right hand side of equation 24 is the rest 
energy, the second term is non relativistic ground state energy 
and the third term is the first order relativistic correction.  
 
6. Relativistic Spin-Less Particle in an Infinite 

Range Linear Potential 
 
In this section we consider a relativistic spin less particle in an 
infinite range linear potential which could be written as 
( ) ∞=xV  for 0<x  and ( ) kxxV =  for 0≥x . The 

formal solution of Schrödinger equation gives complicated 
Airy functions. But we use variational approach to find 
ground state energy with a trial wave function of the form  

 ( ) 2

2

=
x

Nxex
α

αψ
−

              (25) 

 Where α  is variational parameter and N  is 
normalization constant. 
Non relativistically, we write the Hamiltonian of the particle 
in such a linear potential as  

 kx
dx
dH +− 2

2

2
1=  

Here we have set atomic units 1== m  to seek the 
solutions. Then the expectation value of the Hamiltonian for 
the trial wave function is:  

 ( ) ( ) ( )αψαψα ||= HE            (26) 

 Substituting for ( )αψ , we get  
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 Where N  is normalization constant. 
On evaluating the above integrals we get,  
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αα kE 2
4
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 Then we minimize with respect to α , to get the lowest 
value of ( )αE . Thus we put  

 ( )( ) 0=α
α

E
d
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Setting 1=k  for simplicity, we get,  
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 Substituting this in 28 we get the following value for the 
lowest energy:  

 ( ) 1.86105=0αE                  (30) 

 This can be compared with 1.85575=exactE  [7], we find 
an excellent agreement.  
Now we shall extend the same analysis for relativistic spin 
less particle. 
The effective Hamiltonian for a relativistic spin less particle 
in an infinite range linear potential could be written as, 
( )1===with mk    
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 Where again we have set, 1=k ,  
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 On evaluating the above integrals, we get,  
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 Minimizing ( )αffeE  with respect to variational 
parameter α , we get the following equation: 
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In order to obtain the root of the above equation to evaluate 
the bound state energy, we ignore the contribution from the 
quadratic term as its contribution is small for higher values of 
α . Thus we get,  
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 Therefore  
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3
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




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π
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Substituting for ( )0αffeE , we get 2.93882=E . This 

contains the rest energy ( )1=2mc , Thus the ground state 
energy of a particle in an infinite range linear potential with 
relativistic correction is  

 1.93882=E                    (35) 
  
7. Results and Discussions 
 
The variational method seems to be a powerful approximate 
method to obtain eigenenergies of quantum mechanical 
systems. It is extensively used in non relativistic quantum 
mechanics. In this article we have extended the Rayleigh-Ritz 
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Variational method for spin-less relativistic particles. To test 
the validity of the method extended for relativistic particles, 
we applied the same for free particle in an infinite square well 
potential by using an approximate trial function, we applied 
the method for a charged particle in a Coulomb potential by 
taking the exact wave function as trial function and the next 
section we applied the method for a relativistic spin less 
particle in an infinite range linear potential by assuming a 
model trial function instead of complicated airy functions. In 
all the three cases we found that the Variational method 
extended for relativistic case works effectively and the results 
are in good agreement with the results obtained by solving 
Klein Gordon equation and Schödinger equation. Thus the 
method becomes a very important tool to find eigenenergies 
of relativistic particles for which exact solutions are not 
available by formal methods. One could use iterative 
technique to improve trial function. It would be better if one 
could bracket the relativistic eigenenergies with lower and 
upper bounds. Further it would be interesting and important 
to extend this method to find excited energy states of 
relativistic particles.  
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