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Abstract: The gamma distribution is an important life time distribution. However, the drawback it faces in application is that the 
function useful in survival analysis and life testing is that it’s survivor function and hence hazard function does not exist in closed form. 
In this project we investigated the performance of the MLE and UMVUE of the gamma pdf. A simulation study of100 runs was carried 
out in R- program by fixing the shape parameter α at 0.5and 1.0 for small (n=10), moderate (n=30) and large (n=50 and n=100) sample 
sizes. For each fixedα, the shape parameter β was varied at β = 0.1, 0.5, 1.5, 2.0.Jackknife variance estimates for the MLE’s and 
UMVUE’s for the gamma pdfwere obtained. Confidence intervals for the pdfwere constructed and their coverage probabilities 
investigated at each nominal confidence coefficient. The results indicated that the Jackknife estimates of variance of the UMVUE are 
fairly stable compared to their MLE counterparts. In most cases the coverage probabilities of the UMVUE are generally closer to the 
nominal confidence coefficient than their MLE counterparts. 
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1. Introduction 
 
Many researchers have considered estimation of a 
probability density functions. They include Tate (1959) who 
obtained the UMVUE for the cumulative distribution 
function for several probability densities using transform 
theorem.  
 
Barton (1961) gave the UMVUE of the normal, Poisson and 
binomial distribution functions while Kolmogorov (1962) 
studied estimation theory in particular unbiased estimation 
and linear statistical models and obtained the unique 
minimum variance unbiased estimates for a normal 
distribution with unknown mean and variance using Rao-
Blackwell theorem. Patil (1963) pointed out elementary 
methods of deriving UMVUE of probability distribution 
functions. 
 
Basu (1964)) estimated the tail of gamma distribution while 
Chikara and Folks (1974) studied UMVUE of Inverse 
Gaussian distribution and it’s reciprocals and proposed the 
UMVUE of left and right limits of a certain interval which 
contains an Inverse Gaussian variate with an arbitrary given 
probability. 
 
Schaeffer (1976), Viertl (1996), Shao (2003), Aghili(2004) 
all reviewed the computation of UMVUE with particular 
reference to exponential families.  
 
Samanta (1988) studied and derived a unified approach to 
minimum variance unbiased estimation of a probability 
density functions belonging to an exponential family. 
Charturvedi and Sanjeev (2003) derived Uniformly 

Minimum Variance Unbiased Estimators (UMVUEs) of the 
powers of the parameter involved in the probabilistic model 
and the probability density function (pdf) at a specified 
point. 
 
Krotova and Sapozhnikov (2005) proposed a method for 
constructing an optimal unbiased estimator of a given 
function of a parameter, if it exists. Walid and 
Rahimov(2010) used Hudson’s identity to find the 
UMVUEs of some parameters. 
 
Although estimation methods such as UMVUE and MLE for 
different distributions has been carried out but none has been 
done to compare the performance of UMVUE and MLE. In 
this article, we investigate the performance of the UMVUE 
and MLE of the gamma pdf based on the variances and 
coverage probability using Jackknife technique. We shall 
apply Samanta (1988) approach by using the derived 
formula for UMVUE for the gamma distribution and 
simulation experiments to compare the performance of 
UMVUE and MLE.  
 
In section 2 we have reviewed the gamma distribution, its 
parameters and properties. In section 3 we have described 
the maximum likelihood procedure which has been used in 
estimation of parameters of a gamma distribution. UMVUE 
of exponential families and derived formula for UMVUE of 
gamma distribution using mixture of two gamma 
distribution with a common unknown scale parameter has 
been obtained in section 4.Jackknife technique has been 
described in section 5.Section 6 gives the simulation results 
and discussed in section 7.Section 8 gives the concluding 
remarks.  
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2. The Gamma Distribution 
 
The gamma distribution is a two-parameter family of 
continuous probability distributions. It has a scale parameter 
θ and a shape parameter k. If k is an integer then the 
distribution represents the sum of k independent 
exponentially distributed random variables, each of which 
has a mean of θ (which is equivalent to a rate parameter of θ 

−1) .It is sometimes called the Erlang distribution when the 
shape parameter is a positive integer, which is used 
frequently in queuing theory applications.(see Lawless 
,1971). 
 
The probability density function of the gamma distributed 
random variables can be expressed in terms of the gamma 
function parameterized in terms of a shape parameter k and 
scale parameter θ. Both k and θ are positive numbers. The 
equation defining the probability density function of a 
gamma-distributed random variable Xis 

 
A random variable X that is gamma-distributed with scale θ 
and shape k is denoted 
 

X ~Γ (k,θ) or X ~ Gamma (k,θ)  
 
Alternatively, the gamma distribution can be parameterized 
in terms of a shape parameter α = k and an inverse scale 
parameter β = 1/θ, called a rate parameter: 
 

 
If α is a positive integer, theΓ(α) = (α - 1) !  
Both parameterizations are common because either can be 
more convenient depending on the situation. 
 
3. The Maximum Likelihood Estimation 
 
The likelihood function for niid observations (x1, ..., xn) 
having a pdf in (2.1) is 

 
The log-likelihood function is then given by 

 
 

The MLE of θ is obtained by taking partial derivative of l 
(k,θ) with respect to θ and setting it equal to zero and then 
solving to obtain  

 
 The MLE of k is obtained by differentiating l (k , θ ) 
partially with respect to k and setting it equal to zero, then 
substituting (3.3) in the equation and solving to obtain 

 
Where 

 
is the digamma function 
 
There is no closed-form solution for k. The equation (3.4) 
can be solved for k using Newton-Raphson method. An 

initial value of k can be found either using the method of 
moments, or using the approximation. 

 
 
4. Uniformly Minimum Variance Unbiased 

Estimates (UMVUE) of the Gamma 
Distribution 

 
A random variable y has a probability distribution belonging 
to an s-parameter exponential family if its pdf has the 
following form  

 
where ηiand B are real valued functions of the parameters 
and Ti are real valued statistics. If Y1,Y2,…,Yn be 
independent random variable each having pdf in (4.1) then 
the joint probability density function of Y1,Y2,…,Yn is  

 

 n 
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where Ui = Ui (y1,y2,…,yn) = ΣTij (yj)i= 1,2,…,s . It follows 
that U1, U2,…, Us  
j=1  
have a joint- distribution belonging to an s- parameter 
exponential family with a pdf  

 
where U = (U1,U2, …, Us) is a complete minimal sufficient 
statistic for η1(θ), η2(θ) , …, ηs(θ) Lehmann (1983). It is 

usually possible to take u to be either Lebesgue measure or 
counting measure. If u is a Lebesgue measure then we get 
from (4.3)  

 
where the integration extends over all values in the range of 
U. If u is a counting measure then the integral operators in 
(4.4) are replaced by summation operators. The conditional 
pdf of yj given U = u = (u1, u2, …, us) is 

 

 
 

Since U is a complete sufficient statistic, it follows by the 
Rao- Blackwell- Lehmann – Scheffe theorem that hj(y;u) is 
the MVUE of fj(y;θ). The evaluation of the function kn (u1, 
u2, …, us) as defined in (4.4) is not always an easy task. 
There are many probability distributions belonging to an 
exponential family for which it is impossible to compute the 
function kn (u1, u2, …, us). 
 
Known results of Laplace and Mellin transform was used to 
evaluate kn (u1,u2, …, us) as described by Erdelyi (1954) and 
Abramowitz and Stegun (1970). 
 
The UMVUE of the gamma probability density function was 
derived for a mixture of two gamma distributions with a 
common unknown scale parameter (Samanta ,1988). 
 
 The pdf of the mixture of two gamma distributions having 
the same scale parameter is given by 

 
where a1 ≥ 0 , a2 ≥ 0 , a1+a2 =1 p1> 0 , p2> 0 are known 
constants, 

 

 
from equation (4.4)  

 
Using tables of Laplace transforms we have 
 

 
and the UMVUE of f (y; θ) is  

 
Letting a1 = 1 and a2 = 0 in (2.9) gives the MVUE of the 
gamma pdf as 

 
But a = 1 
Therefore  

 
 
5. Jackknife Estimates of Variances^  
 
Jackknife technique is an approach to estimation where θj(p) 
is a linear function of P which matches θ (p) at n points 
corresponding to the deletion of a single xi from observed 
data set x1, x2, … .xn as given by Efron and Tibshirani 
(1983) . 
 
Hence Jackknife mean of MLE / UMVUE will be obtained 
as  

 
where R is the number of runs for each sample size. 
 
The Jackknife Variances of MLE and UMVUE are given as 
follows. 

 
Confidence intervals for the Jackknife variances were 
constructed and were used to obtain coverage probabilities 
for MLE and UMVUE of f(x; k, θ) using R program. 
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6. Simulation Results 
 
Simulation experiments to compare the performance of 
MLE and UMVUE in terms of their Jackknife estimates of 
variances were carried out. For purposes of illustration a 
simulation study for different sample sizes and for different 
parameter values was performed. Sample sizes were taken as 
n = 10, 30, 50,100; the scale parameter was fixed at β = 0.1, 
0.5, 1.0, 1.5 and 2.0 while shape parameter was fixed at α = 
0.5, 1.0. All the results were based on 100 runs for each 
sample size and the MLE and UMVUE of the estimates of 
Jackknife variances were obtained and presented in Table 
6.1 and the comparison of MLE and UMVUE has been 
given in Figures 6.1 to 6.10. The coverage probabilities are 
given in Table 6.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.1: MLE and UMVUE estimates of Jackknife 
variances of gamma pdf atα = 1.0 and α = 0.5 for β = 0.1, 

0.5, 1.0, 1.5 and 2.0 for different sample sizes at n = 10, 30, 
50 and 100. 

Sample Sizes  
Jacknife variances Jacknife variances 
ESTIMATES AT α ESTMATES AT α 

Β MLE UMVUE MLE UMVUE 
n = 10 0.1 2.200754 0.183193 2.736723 0.070502 
n =30 0.1 1.452181 0.13017 2.092641 0.018173 
n =50 0.1 0.649787 0.163284 1.059083 0.023029 

n = 100 0.1 1.653837 0.101417 1.30003 0.009737 

      n = 10 0.5 2.852338 0.286356 0.75916 0.102121 
n =30 0.5 0.393473 0.187964 0.068433 0.024958 
n =50 0.5 1.005423 0.123434 0.146584 0.018377 

n = 100 0.5 1.071594 0.125861 0.116203 0.018504 

      n = 10 1 2.599742 0.351251 0.595053 0.142364 
n =30 1 0.786979 0.182424 0.170797 0.03321 
n =50 1 0.147389 0.214914 0.092839 0.03354 

n = 100 1 0.056954 0.136707 0.108504 0.012869 

      n = 10 1.5 2.372357 0.349805 0.142654 0.081316 
n =30 1.5 0.337826 0.127208 0.086309 0.028666 
n =50 1.5 0.088219 0.164591 0.073699 0.032082 

n = 100 1.5 0.051351 0.169832 0.095585 0.016683 

      n = 10 2 1.362984 0.467653 0.09135 0.064721 
n =30 2 0.123934 0.200438 0.150726 0.023202 
n =50 2 0.067671 0.059083 0.051917 0.042096 

n = 100 2 0.075367 0.185733 0.065103 0.029146 
 

Table 6.2: Coverage probabilities of MLE and UMVUE variance estimates of gamma pdf 

 
β = 0.1 β = 0.5 β = 1.0 β = 1.5 β =2.0 

MLE UMVUE MLE UMVUE MLE UMVUE MLE UMVUE MLE UMVUE
α = 0.5 , n=10 

90% 86 94 94 90 95 91 96 96 97 92 
95% 90 99 96 96 96 95 98 99 99 99 
99% 94 100 97 100 97 100 100 100 99 99 

α = 0.5 , n=30 
90% 94 93 90 91 94 95 92 93 95 93 
95% 95 96 93 96 96 97 96 98 97 98 
99% 95 99 96 100 98 100 98 100 99 100 

α = 0.5 , n=50 
90% 92 97 95 93 93 95 96 89 90 91 
95% 93 98 98 95 95 97 97 93 96 93 
99% 96 99 98 98 98 99 97 99 98 97 

α = 0.5 ,n=100 
90% 87 92 95 91 92 91 91 90 95 90 
95% 90 96 97 95 97 93 95 95 97 97 
99% 100 100 98 98 99 98 98 97 98 99 

α = 1 , n=10 
90% 93 93 99 96 93 93 95 91 98 91 
95% 94 96 99 98 94 94 97 94 98 94 
99% 96 97 99 100 97 97 98 98 99 97 

 
 

90% 91 92 92 92 95 93 99 91 96 90 
95% 94 95 94 95 99 95 100 94 98 96 
99% 100 98 98 99 99 97 100 98 100 98 

α = 1 , n=50 
90% 91 90 97 93 98 92 92 91 95 95 
95% 93 96 97 95 98 95 95 96 96 97 
99% 98 98 97 97 98 97 98 98 96 98 

α = 1 , n=100 
90% 97 92 98 89 89 90 80 92 90 92 
95% 98 95 99 93 93 94 98 95 92 96 
99% 99 98 99 98 98 97 100 98 95 98 

Paper ID: 020132074 2084



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 8, August 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

7. MLE and UMVUE estimates of Jackknife 
variances of gamma pdf at: 

 

 
Figure 6.1: α=0.5 and β =0.1 

 

 
Figure 6.2: α=0.5 and β =0.5 

 

 
Figure 6.3: α=0.5and β =1.0 

 

 
Figure 6.4:α=0.5 and β =1.5 

 

 
Figure 6.5: α=0.5 and β =2.0 

 
Figure 6.6: α=1.0 and β =0.1 

 

 
Figure 6.7: α= 1.0 and β =0.5 

 

 
Figure 6.8: α= 1.0 and β =1.0 

 

 
Figure 6.9: α= 1.0 and β =1.5 

 

 
Figure 6.10: α= 1.0 and β =2.0 
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8. Numerical illustration from life time data 
 
Jackknife technique on life time data to compare the 
performance of MLE and UMVUE, life time data 
fromBirnbaum & Saunders (1958) and Balakrishnan et al. 
(2009)were taken and analysed. 
 
Lifetimes of aluminum specimens exposed to 31,000 psi. 
from Birnbaum & Saunders(1958) 
 
70 90 96 97 99 100 103 104 104 105 
107 108 108 108 109 109 112 112 113 114 
114 114 116 119 120 120 120 121 121 123 
124 124 124 124 124 128 128 129 129 130 
130 130 131 131 131 131 131 132 132 132 
133 134 134 134 134 134 136 136 137 138 
138 138 139 139 141 141 142 142 142 142 
142 142 144 144 145 146 148 148 149 151 
151 152 155 156 157 157 157 157 158 159 
162 163 163 164 166 166 168 170 174 196212 
 
The Jackknife estimate of variance for UMVUE for the data 
was 0.181176while that of MLE was 0.196551. Another set 
of data used as an example was from Balakrishnan et al. 
(2009) that used mixture inverse Gaussian distributions to 
describe several datasets.  
 
Data sets obtained from Balakrishnan et al. (2009). 
 
22 2425(2) 272829(4) 30 31(6) 32(7)  
33(3) 34(6) 35(4) 36(11) 37(5) 38(3) 39(6) 40(14) 41(12) 
42(6) 43(5) 44(7) 45(10) 46(6) 47(5) 48(11) 49(8) 50(8) 
51(8)52(14) 53(10) 54(13) 55(11) 56(10) 57(15) 58(11) 
59(9) 
60(7) 61(2) 62 63 64(4) 65(2)66(3) 7174 7579 86 
 
The Jackknife estimate of variance for UMVUE for the data 
was 0.048815while that of MLE was 0.053137. 
 
9. Discussion 
 
From Table 6.1,whenα is fixed at α = 1.0 and α = 0.5 and 
varying values of β i.e. β = 0.1, 0.5, 1.0, 1.5 and 2.0 for 
small, medium and large sample sizes, we observe that the 
Jackknife estimate of variances for UMVUE are smaller for 
small and medium sample sizes as compared to the 
Jackknife estimates of variances for MLE. Table 6.2 shows 
that in most cases the coverage probabilities of MLE shows 
over coverage data given nominal confidence coefficients, 
while coverage probabilities of UMVUE are generally closer 
to the nominal confidence coefficients.  
 
Figure 6.1 – Figure 6.10displays graphs from which it can be 
observed that for varying sample sizes, Jackknife estimates 
of variances for MLE experiences large fluctuations as 
compared to those of UMVUE. From numerical illustrations 
of life time data from Birnbaum & Saunders (1958) and 
Balakrishnan et al. (2009), it can be seen that the Jackknife 
estimate of variances for UMVUE are generally smaller 
compared to variances for MLE. 
 
 

10. Summary and Conclusion 
 
In sectio2, we have reviewed the derivation of UMVUE and 
MLE of the gamma distribution. The Jackknife variance 
estimates of MLE and UMVUE of the gamma pdf have been 
obtained using Samanta (1988).From the simulation results 
it can be observed that the Jackknife estimates of the 
variances for UMVUE are generally smaller and experiences 
smaller fluctuations as compared to the MLE counterparts. 
From coverage probabilities UMVUE shows generally a 
better coverage than those of MLE in terms of closeness to 
nominal confidence coefficients hence we can generally 
conclude that UMVUE gives more efficient estimates than 
those given by MLE particularly for small and medium 
sample sizes. 
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