
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Management and Utilization of Database
Connection Pool for Quality of Services

Tanuja Sharma

Department Of CSE (M.Tech), MDU Rohtak, Haryana, India

Abstract: It is quite difficult to maintain the performance of the web application server resources, that are held exclusively by a service
request for the duration of its execution such exclusively-held server resources become performance bottleneck points, with failures to
obtain such a resource constituting a major portion of request rejections due to server overload conditions. Because: (1) complex
software systems are component middleware that using several independently maintained server resource management mechanisms; (2)
session-oriented client behavior of complex data access patterns which makes it difficult to know the impact of tuning these mechanisms
has on application behavior; and (3) huge ranging execution having complexity of different types request that exhibit complex structural
organization behavior of component based internet services themselves. In this paper we show methodology to compute the optimal pool
sizes of two resources i.e. thread and data base connection .How clients use Internet services enables mechanisms that achieve two
interconnected goals: (1) providing improved QoS to the service clients, and (2) optimizing server resource utilization. In this paper
review on improve server request on web application, optimization of server resources pool, data base connection pooling and quality of
service.

Keywords: client behavior, optimization of server resource pool, quality-of-service, web application server performance; database
connection pooling

1. Introduction

Modern Internet services such as e-mail, banking, online
shopping, and entertainment web sites have become
common place in recent decade. Providers of these
services often implement them as applications hosted on
web application (middleware) servers, such as IBM Web
Sphere, Oracle Web Logic, and Red Hat JBoss. The
emergence of these web portals marked a shift from
monolithically structured web sites with static read-only
content, which were typical for the early Internet, to
complex services that provide richer functionality, and
dominate the modern Internet.

It become critical for service provider to deal with when
server get over load due to it service performance of server
get degraded (decrease).Complex software systems of
middleware platforms are that expose to system
administrators several mechanisms that can be
independently maintained to improve Internet application
performance and optimize server resource utilization[10].
On middleware layer CPU scheduling, memory
management etc work to control over low level resource
and on high level threads, data base connection work, etc.
number of user shared some resources concurrently, some
part of resource get shared and other which is non shared
become failure to obtain such resources constitute major
portion of resource get rejected due to overload. It creates
a pools limited number of thread and data base and also
schedule them in order to the incoming request. Optimal
means, using more thread and data base connection to
increase the execution parallelism. But it can degrade the
performance due to thread context switching and increase
data and lock the contention in the database. Optimal
number is used to execute requests of different set of
application components and middleware services.
Component-based internet services are difficult to
maintain the performance because (1) complex software
systems are component middleware that expose several

independently maintained in an attempt to improve
application performance and optimization server resource
management mechanisms; (2) complex session-oriented
client behavior of complex data access patterns which
makes it difficult to know the impact of tuning these
mechanisms has on application behavior; and (3) huge
ranging execution complexity of different types request
that exhibit complex structural organization behavior of
component based internet services themselves .

TPC-W application-To test the compute optimal values of
critical resource pools, we use the TPC-W transactional
web e-Commerce benchmark [9], The TPC-W
specification describes in detail the application data
structure and the web invocations that constitute the web
site functionality, and defines how they change the
application data stored in the database. A typical TPC-W
user session consists of the following requests: user starts
web site navigation by accessing the Home page, searches
for particular products (Search), retrieves information
about specific items, adds some of them to the shopping
cart, initiates the check-out process, registering and
logging in as necessary, and finally commits the order.

These services on internet share several common
characteristics have implement the way they are structured
and use by their clients.

 Session-oriented usage by clients: The typical

interaction of users with such services is organized
into sessions, a sequence of related requests, which
together achieve a higher-level user goal.

 Complex data access patterns: In certain service
requests not only read but also write application data
Moreover, concurrent requests coming from different
clients can access and modify shared application data.
Data access patterns become even more complicated
when the application data is replicated .The outcome
of a request execution depends on the data sources it

Paper ID: 22071409 1938

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

accesses, and may be influenced by concurrent user
requests.

 Use of component middleware: A growing number of
services utilize component middleware such as the
Java Platform Enterprise Edition (Java EE) framework
[Java EE 2011] as their building platform.
Consequently, a web application’s behavior depends
not only on the way it is programmed, but also on the
way it is assembled, deployed, and managed at
runtime.

2. Background-Methodology

In this work we focus on solutions that target the following
interconnected goals:

1. Model use for request execution with 2 tier exclusive
resources holding (1st tier thread & 2nd database).
Request middle database connection caching with the
standard transaction wide database connection caching.

2. Compute the optimal number of database connection
and thread for a given internet application its server and
database environment and specific user load.

3. providing improved QoS[2] guarantees to the clients of
Internet services;

4. achieving optimal server resource utilization; and
5. Providing application developers with the guidelines for

natural application structuring that enable efficient use
of the proposed mechanisms for improving service
performance.

1. Model Use for Request Execution with 2 Tier Exclusive Resources Holding

Request is executed by web application server and
connection is established if time out for obtaining the
thread time request is rejecting with message. Data base
connection is obtained by request available for the
exclusive use by the request until the request is processed.

How it works: To access the data base request obtained a
data base connection, from data base connection pools.
After request work is done over the data base connection
and it returned to the resource pool. It can request from the
pool many times during the execution of a single service
request. This process also reduces the number of
connection revoked from the data base. 2-level model of
request execution and the flow of a request through the
system, with the adopted request-wide database connection
caching

2. Compute the optimal number of database connection
and thread for a given internet application its server
and database environment and specific user load

Here we compute optimal number- where M is number of
threads and N is number of database connection where (M
≥ N), In our 2-tier for request execution model, request
execution time can be represented as follows:

t = w THR + p + w DB + q

Where w THR times spend by request in waiting for thread,
p is the time the request spends on processing before
getting a database connection, wDB is the time spent by the
request in waiting for a database connection, and q is the

time the request spends processing with a database
connection in its possession. Note that for requests that do
not access the database, wDB = q = 0.

In an optimal server configuration we would want to
achieve a balanced utilization of server threads and
database connections. This means that under maximum
sustained user load, we would want all threads and
database connections to be fully utilized. Number of idle
threads or idle database connections in situations where
database connections or threads (respectively) become the
resource bottleneck is a waste of server resources and will
cause performance degradation.

Step1- Obtain the values of pi and qi for some subset of
possible values of M and N. Where i is request types in a
session.
Step 2- The obtained data points for functions pi(M,N) and
qi(M,N) for domain function.

(M ≥ N > 0)

Step3-we get the value of maximum sustainable session
throughput λ(M,N), for every possible combination of M
and N. We compute session throughput by following
equation.

λ(M,N) = min{λDB(M,N), λTHR(M,N)}.

For functions pi(M,N) and qi(M,N).with only N database
we cannot compute, on average not more than session per

Paper ID: 22071409 1939

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

unit time λDB(M,N) =N/ i Viqi and similarly for M
database λTHR(M,N) =M/i Vi(pi + qi)

Figure 2: Steps of to compute the optimal number of server threads and database connections

3. To Provide Solution to Last Three Targeted
Interconnected Goal

Session-oriented mechanism is use for component-based
Internet services by their clients that helps to (1) improve
QoS delivered to the clients; (2) optimizing management
and utilization of server resource; and (3) application
developers that provide the guidelines for natural
application structuring mechanisms for improving service
performance.

Reward-driven session prioritization (RDRP)[11]
mechanisms that try to maximize reward attained by the
service, by dynamically assigning higher execution
priority values to the requests whose sessions are likely to
bring more reward. It schedule the incoming request
available to thread and DB connection with the request
priority set by RDRP algorithm (FIFO is used).Request
which is unable to connect to thread and database
connection within predefined time interval, it get reject
with an explicit message. RDRP algorithm work as
follows.

1. For every incoming request, it observe sequence of

request already exist in the session and compare it with
incoming sequence of request with knows CBMG
structure of session type

2. For each session type of CBMG (probability of session
type of customer behavior modern graph), it compute its
expected reward and execution cost. This information is
used to get non-conditional values for future session
request.

3. Priority of request is defined; its session reward is
divided by its expected execution cost for future session
requests.

4. Finally priority of request is define, which determine
and control the schedule in the existed thread and DB
connection to incoming requests.

3. Future Scope

Internal complexity of centralized data Internet services
and their hosting environments will grow in the future; the
only way to focus efficient management and beneficial
utilization of these systems is to curtail their external
complexity, as it is exposed to the system administrators.
To limit the exposed management complexity of the
service is to automate some of the service management
aspects, which contrast with current primarily manual
approaches for the same task.

4. Conclusions

Specifically, the contributions of this work are the
following:

 For maximizing profit attained by the service in the

overload situations and improving the QoS delivered to
users by using Reward-driven session prioritization
schemes

 For a given maximum of client requests using model of
request execution with 2-tier exclusive server resource
holding (threads, database connections),

 Analytical models of concurrent web session execution
with bounded inconsistency in shared application data,
which are able to accurately predict the values of QoS
metrics of interest.

References

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti.

“Performance guarantees for web server end-
systems”: A control-theoretical approach. IEEE
Transactions on Parallel and Distributed Systems,
13(1):80–96, 2002.

[2] T. F. Abdelzaher and K. G. Shin. “QoS provisioning
with Contracts in web and multimedia servers”. In

Paper ID: 22071409 1940

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proceedings of the IEEE Real-Time Systems
Symposium (RTSS’99), December 1999.

[3] J. Almedia, M. Dabu, A. Manikntty, and P. Cao.
“Providing differentiated levels of service in web
content hosting”. In Proceedings of the First
Workshop on Internet Server Performance, June 1998.

[4] J. Almedia, M. Dabu, A. Manikntty, and P. Cao.
“Providing differentiated levels of service in web
content hosting”. In Proceedings of the First
Workshop on Internet Server Performance, June 1998.

[5] H. Chen and P. Mohapatra.”Session-based overload
control in QoS-aware web servers”. In Proceedings of
the IEEE Conference on Computer Communications

[6] L. V. Ahlfors. Complex Analysis. McGraw–Hill,
1979.

[7] ACM/IFIP/USENIX International Middleware
Conference. Lecture Notes in Computer Science, vol.
2672, Springer, Berlin.

[8] TPC-W. 2005.”Transaction Processing Performance
Council”. Transactional web e-commerce benchmark.
http://www.tpc.org/tpcw/.

[9] TPC-W-NYU. 2006. “A Java EE implementation of
the TPC-W benchmark.”
http://www.cs.nyu.edu/totok/professional/software/tpc
w/tpcw.html.

[10] TOTOK, A. AND KARAMCHETI, V. 2010a.
Optimizing utilization of resource pools in web
application servers”. Concurrency Comput: Pract.
Exper. 22, 18, 2421–2444.

[11] TOTOK, A. AND KARAMCHETI, V. 2010b. RDRP:
“Reward-driven request prioritization for e-commerce
websites””. Electron. Commerce Res. Appl. 9, 6, 549–
561.

[12] L. Cherkasova. “Scheduling strategy to improve
response time for web applications”. In Proceedings
of the International Conference on High Performance
Computing and Networking (HPCN Europe’98), April
1998

Author Profile

Tanuja Sharma, Pursing Mater of Technology from
Department of Computer Science & Engineering ,World
College of Technology and Management(Approved by
AICTE Govt. & Affiliated to Maharshi Dayanand
University,Haryana, India

Paper ID: 22071409 1941

