
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Performance Analysis of TCP Variants under
MANET Environment and using NS-2

Anwar Khan¹, Dharmendra Sharma²

1Pursuing M.E., S D Bansal, Indore, India

²Assistant Professor, Dept of C&S, S D Bansal, Indore, India

Abstract: TCP was designed for wired networks and the sender assumes that packet loss is an indicator of network congestion, but this
assumption may not apply to Mobile Ad hoc Networks (MANETs). In Mobile Ad Hoc networks, performance of the standard TCP is
significantly degraded due to characteristics of MANET such as route failures due to node mobility and link errors. In this paper, the
authors investigate the performance of TCP variants such as New Reno, SACK, TCP Tahoe and Vegas. Simulation results from the
implementation of different static scenarios have been obtained. Different routing protocols such as Ad hoc On-Demand Distance Vector
(AODV) and Destination Sequence Distance Vector (DSDV) have been investigated to obtain the performance of TCP variants in this
paper.

Keywords: TCP, MANET, ADHOC, NS-2, Variants

1. Introduction

Mobile Ad hoc Networks (MANETs) are a collection of
mobile nodes forming a dynamic autonomous network.
Nodes communicate with each other without the
intervention of centralized access points or base stations.
In such a network, each node acts both as a router and as a
host. A MANET has several advantages over traditional
wireless networks, including ease of deployment, speed of
deployment, and decreased dependence on a fixed
infrastructure. Typical applications of MANETs include
personal communication with laptops and PDAs, group
communication at conferences and presentations,
communication in military, between moving vehicles and
in emergency situations. Though MANETs are becoming
extremely popular with the advent of various types of
mobile devices; rapidly changing connectivity, network
partitions, higher error rates, security threats, frequent
collision probability, bandwidth and power constraints
together pose new problems in designing protocols. This
paper is organized as follows. A brief introduction to TCP
protocol operations is given in section II. In section III, an
overview of routing protocols is presented. Section IV
presents the simulation environment and topologies.
Section V gives discussion and analysis. Finally, summary
and conclusion of the paper are given in section VI.

2. TCP (Transmission Control Protocol)

Congestion Control Algorithm

TCP is known as a full duplex protocol meaning each TCP
connection provides a pair of byte streams in both
directions. TCP implements the congestion control
mechanism with each of these byte streams so that the
receiver can limit the sender from transmitting more data
in the network [5]. This section discusses about four
intertwined congestion control mechanisms: slow start,
congestion avoidance, fast retransmit and fast recovery. A
TCP must not be more aggressive in sending data than
these four algorithms allow.

Slow Start and Congestion Avoidance

The TCP sender employs the slow start and congestion
avoidance algorithms to avoid more data to be sent in the
network than it is capable of. For implementing these
algorithms, two flow control variables, namely, the
congestion window and the advertised window are
included in each TCP connection state. The TCP sender
imposes the congestion window while the receiver
imposes the advertised window. The minimum of the
congestion window and the advertised window regulates
the data transmission. Besides, The slow start threshold
(ssthresh), known as a state variable, is used to decide
which one is to be used among the slow start or congestion
avoidance algorithms for controlling the data transmission.
During the beginning of the transmission, there are many
unfamiliar conditions present in the network; therefore
TCP needs to gradually discover the network by assessing
the bandwidth and determining the available capacity [6].
This will eventually prevent the network from being
congested with large bursts of data.

Figure 1 shows the slow start and congestion avoidance
mechanisms executed by the TCP. Upon establishing a
new connection, TCP starts the slow start mechanisms and
sets the congestion window size to one segment. The
congestion window size is incremented by one for each
ACK received by the TCP sender. Thus, 1 packet is sent in
the first round trip time (RTT), 2 packets are for the
second RTT, 4 packets are for the third RTT and continue
incrementing exponentially. This is why slow start phase is
also known as the exponential growth phase where slow
start increases the window size by the number of segments
acknowledged. This process will be continuing until either
of the following situations occurs:

1. An acknowledgment is not received for some

segments.
2. A predetermined slow start threshold value is reached.
3. The congestion window size becomes equal to the

receiver’s advertised window size.

Paper ID: 14061403 387

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

If either of these events takes place, TCP enters the
congestion avoidance (linear growth) phase. Each time an
ACK is received, congestion avoidance suggests that the
congestion window size should be increased by (segment
size*segment size)/congestion window [8]. Here, segment
size and congestion window is maintained in bytes.

Figure 1 Slow start and congestion avoidance mechanism

[7]

Fast Retransmission and Fast Recovery

Whenever a packet segment is transmitted, TCP sets a
timer each time and thus ensures the reliability. TCP
retransmits the packet, if it does not obtain any
acknowledgement within the fixed time-out interval. The
reason for not getting any acknowledgement within a
specific duration is due to either the packet loss or the
network congestion. Therefore the TCP sender implements
the fast retransmit algorithm for identifying and repairing
the loss. This fast retransmit phase is applied mainly based
on the incoming duplicate ACKs. As TCP is not able to
understand whether a packet loss or an out-of-order
segment causes the generation of the duplicate ACK, it
waits for more duplicate ACKs to be received [9]. Because
in case of out-of order segment, one or two duplicate
ACKs will be received before the reordered segment is
processed. On the other hand, if there are at least three
duplicate ACKs in a row, it can be assumed that a segment
has been lost. In that case, the sender will retransmit the
missing data packets without waiting for a retransmission
timer to expire.

After the missing segment is retransmitted, the TCP will
initiate the fast recovery mechanism until a non-duplicate
ACK arrives. The fast recovery algorithm is an
improvement of congestion control mechanism that
ensures higher throughput even during moderate
congestion [6]. The receiver yields the duplicate ACK only
when another segment is reached to it; therefore this
segment is kept in the receiver's buffer and does not
consume any network resources. This means, data flow is
still running in the network, and TCP is reluctant to reduce
the flow immediately by moving into the slow start phase.
Thus, in fast recovery algorithm, congestion avoidance
phase is again invoked instead of slow start phase as soon
as the fast retransmission mechanism is completed.

In our work we compare the four TCP variants which are
as follows:

TCP Tahoe
New RENO

SACK
Vegas

TCP Tahoe

Modern TCP implementations contain a number of
algorithms aimed at controlling network congestion while
maintaining good user throughput. Early TCP
implementations followed a go-back- model using
cumulative positive acknowledgment and requiring a
retransmit timer expiration to re-send data lost during
transport. These TCPs did little to minimize network
congestion.

The Tahoe TCP implementation added a number of new
algorithms and refinements to earlier implementations.
The new algorithms include Slow-Start, Congestion
Avoidance, and Fast Retransmit. The refinements include
a modification to the round-trip time estimator used to set
retransmission timeout values. All modifications have
been described elsewhere.

The Fast Retransmit algorithm is of special interest in this
paper because it is modified in subsequent versions of
TCP. With Fast Retransmit, after receiving a small number
of duplicate acknowledgments for the same TCP segment
(dup ACKs), the data sender infers that a packet has been
lost and retransmits the packet without waiting for a
retransmission timer to expire, leading to higher channel
utilization and connection throughput.

New-Reno TCP

We include New-Reno TCP in this paper to show how a
simple change to TCP makes it possible to avoid some of
the performance problems of Reno TCP without the
addition of SACK. At the same time, we use New-Reno
TCP to explore the fundamental limitations of TCP
performance in the absence of SACK. The New-Reno TCP
in this paper includes a small change to the Reno
algorithm at the sender that eliminates Reno's wait for a
retransmit timer when multiple packets are lost from a
window. The change concerns the sender' s behavior
during Fast Recovery when a partial ACK is received that
acknowledges some but not all of the packets that were
outstanding at the start of that Fast Recovery period. In
Reno, partial ACKs take TCP out of Fast Recovery by
“deflating” the usable window back to the size of the
congestion window. In New-Reno, partial ACKs do not
take TCP out of Fast Recovery. Instead, partial ACKs
received during Fast Recovery are treated as an indication
that the packet immediately following the acknowledged
packet in the sequence space has been lost, and should be
retransmitted. Thus, when multiple packets are lost from a
single window of data, New-Reno can recover without a
retransmission timeout, retransmitting one lost packet per
round-trip time until all of the lost packets from that
window have been retransmitted. New-Reno remains in
Fast Recovery until all of the data outstanding when Fast
Recovery was initiated has been acknowledged.

Paper ID: 14061403 388

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

SACK

TCP with ‘Selective Acknowledgments’ is an extension of
TCP RENO and it works around the problems face by
TCP RENO and TCP New-Reno, namely detection of
multiple lost packets, and re-transmission of more than one
lost packet per RTT. SACK retains the slow-start and fast-
retransmits parts of RENO. It also has the coarse grained
timeout of Tahoe to fall back on; increase a packet loss is
not detected by the modified algorithm. SACK TCP
requires that segments not be acknowledged cumulatively
but should be acknowledged selectively. Thus each ACK
has a block which describes which segments are being
acknowledged. Thus the sender has a picture of which
segments have been acknowledged and which are still
outstanding. Whenever the sender enters fast recovery, it
initializes a variable pipe which is an estimate of how
much data is outstanding in the network, and it also set
CWND to half the current size. Every time it receives an
ACK it reduces the pipe by 1 and every time it re-
transmits a segment it increments it by 1. Whenever the
pipe goes smaller than the CWD window it checks which
segments are un-received and send them. If there are no
such segments outstanding then it sends a new packet [11].
Thus more than one lost segment can be sent in one RTT.

VEGAS

Vegas is a TCP implementation which is a modification of
Reno. It builds on the fact that proactive measures to
encounter congestion are much more efficient than
reactive ones. It tried to get around the problem of coarse
grain timeouts by suggesting an algorithm which checks
for timeouts at a very efficient schedule. Also it overcomes
the problem of requiring enough duplicate
acknowledgements to detect a packet loss, and it also
suggests modified slow start algorithms which prevent it
from congesting the network. It does not depend solely on
packet loss as a sign of congestion. It detects congestion
before the packet losses occur. However it still retains the
other mechanism of Reno and Tahoe, and a packet loss can
still be detected by the coarse grain timeout of the other
mechanisms fail.

3. Routing in MANET

Routing protocols in MANET are categorized as: proactive
and reactive routing protocols. In the following
subsections a brief description for each of them is given.

Proactive (Table-Driven) Routing Protocols

In this category, routing protocols such as Destination
Sequence Distance Vector (DSDV) [7] attempt to maintain
consistent and up-to-date routing information from each
node to every other node in the network. This kind of
approach has the property of lower latency and higher
overhead. In DSDV the routes to all destinations are
readily available at every node at all times. Here messages
are passed between nodes to maintain their routing table.
The routing table of each node consists of the shortest
paths to all destinations from it. Each routing table entry in
DSDV is tagged with a sequence number which is

provided by the destination node. This is used to avoid the
count-to-infinity problem associated with distance-vector
protocols. The messages used in DSDV to maintain
routing table are:

 Periodic update messages
 Triggered update messages

The periodic update messages are those in which the
whole routing table is transmitted to all neighbors of a
node, at regular intervals of time. Triggered update
messages are transmitted when there is any change in
network topology. In triggered update message only
significant changes in routing table are transmitted
between the nodes.

Reactive (On-Demand) Routing Protocols

In this category, routing protocols such as Ad hoc On-
Demand Distance Vector (AODV) [8] source-initiated on-
demand routing which creates routes only when desired by
the source node. When a node requires a route to
destination, it initiates a route discovery process within the
network. In general, on-demand routing protocols are
characterized by higher latency and lower overhead.
AODV includes loop freedom and that link breakages
cause immediate notifications to be sent to the affected set
of nodes. Additionally, AODV has support for multicast
routing and avoids the Bellman Ford "counting to infinity"
problem. The use of destination sequence numbers
guarantees that a route is fresh.

AODV uses different messages to discover and maintain
links. Whenever a node wants to try and find a route to
another node, it broadcasts a Route Request (RREQ) to all
its neighbors. The RREQ propagates through the network
until it reaches the destination or a node with a fresh
enough route to the destination, then the route is made
available by unicasting a RREP back to the source. The
algorithm uses hello messages (a special RREP) that are
broadcasted periodically to the immediate neighbors.
These hello messages are local advertisements for the
continued presence of the node and neighbors using routes
through the broadcasting node will continue to mark the
routes as valid. If hello messages stop coming from a
particular node, the neighbor can assume that the node has
moved away and mark that link to the node as broken and
notify the affected set of nodes by sending a link failure
notification (a special RREP) to that set of nodes.

4. Simulation Environment

We have implemented our work i.e. Creation of MANET
Scenario for NS-2 and then to analyze Different routing
protocols with the use of Various performance matrices
Like Packet Delivery Ratio, End to End delay, Residual
Energy and Overall Throughput. In our case firstly we
have created scenario file for IEEE 802.11 standard which
has to be used along with our TCL Script than we have
created a TCL script consist of various routing protocols in
our case these are AODV and DSDV than a particular
MANET scenario or topology in our case it consist of 50,
75 and 100 static nodes with various TCP variants which

Paper ID: 14061403 389

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

are NEW RENO, SACK, TCP TAHOE and VEGAS for
Two Ray Ground model.

Our implementation consists of typical installation process
of ns-2 complexity of topography creation and a detailed
understanding of AWK scripts. In our case the total
environment size taken is of 2 KM.

End to End Delay

The end-to-end delay is the time needed to traverse from
the source node to the destination node in a network. The
end-to-end delay is measured in ms, The delay assesses the
ability of the routing protocols in terms of use- efficiency
of the network resources.

End to End Delay for 50 nodes: Figure shows the End to
End Delay under various protocols i.e. AODV and DSDV
for the 50 nodes.

Figure 2 End to End Delay for 50 nodes

End to End Delay for 75 nodes:- Figure shows the End to
End Delay under various protocols i.e. AODV and DSDV
for the 75 nodes.

Figure 3 End to End Delay for 75 nodes

End to End Delay for 100 nodes:- Figure shows the End
to End Delay under various protocols i.e. AODV and
DSDV for the 100 nodes.

Figure 4 End to End Delay for 100 nodes

5. Analysis of End to End Delay

From above figures which are 4.4, 4.5 and 4.6 shows the
End to End Delay in ms for AODV and DSDV protocols
with various node densities which are 50, 75 and 100
nodes. From there it is clear that for NEWRENO End to
End Delay of AODV very large as compare to DSDV for
50 nodes but when we analyze for 75 nodes and 100 nodes
AODV much better than DSDV, when we analyze for 50
nodes and 75 nodes AODV have small End to End Delay
as compare to DSDV for SACK, TCP TAHOE and
VEGAS. But when the node density increased End to End
Delay of ADOV with SACK and VEGAS increased as
compare to DSDV and for TCP TAHOE DSDV remain
better as compare to AODV.

Paper ID: 14061403 390

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Throughput

The average rate at which the data packet is delivered
successfully from one node to another over a
communication network is known as throughput. The
throughput is usually measured in bits per second
(bits/sec). A throughput with a higher value is more often
an absolute choice in every network.

Throughput for 50 nodes: Figure shows the Throughput
under various protocols i.e. AODV and DSDV for the 50
nodes.

Figure 5 Throughput for 50 nodes

Throughput for 75 nodes: Figure shows the Throughput
under various protocols i.e. AODV and DSDV for the 75
nodes.

Figure 6 Throughput for 75 nodes

Throughput for 100 nodes: Figure shows the Throughput
under various protocols i.e. AODV and DSDV for the 100
nodes.

Figure 7 Throughput for 100 nodes

6. Analysis of Throughput

From above figures which are 4.7, 4.8 and 4.9 shows the
Throughput for AODV and DSDV protocols with various
node densities which are 50, 75 and 100 nodes. From there
it is clear that the overall Throughput of DSDV protocol
with Vegas is good as compare to the other variants with
AODV and DSDV. So we analyze that the DSDV is better
as compare to AODV protocol in terms of Throughput.

7. Conclusion

From our Result it is clear that the TCP variant SACK is
best between these four variants along with VEGAS is
burst variant in terms of END to END Delay and
Throughput. When we analyze Protocols we cannot
analyze clearly that which one is better because with
different scenario both protocols gives better performance,
but when we analyze for END to END Delay and
Throughput DSDV better for high node density and
AODV gives better results for low and moderate node
density.

8. Future Scope

We have done the work of TCP variants comparison for
MANET scenario the same can be done on WSN scenario
as well as on some other protocols also.

References

[1] S. Senouci, and G. Pujolle, “Energy efficient

consumption in wireless ad hoc networks” IEEE
ICC2004 (International conference on
communications), Paris JUNE 2004.

[2] M. Zorzi and R. Rao, “Energy Efficiency of TCP in a
local wireless environment “mobile networks and
applications,, vol. 6, no. 3, July 2001.

[3] S. Agrawal and S. Singh, “An Experimental Study of
TCP’s Energy Consumption over a Wireless Link”
4th European personal Mobile Communications
Conference, Feb 20-22, 2001, Vienna Austia.

[4] H. Singh and S. Singh, “Energy consumption of TCP
Reno, New Reno, and SACK in multi-hop wireless

Paper ID: 14061403 391

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

networks”, in ACM SIGMETRICS 2002, June 15-19
2002.

[5] W. Stevens, “TCP slow start, congestion avoidance,
fast retransmit and fast recovery algorithms," RFC
2001, IETF, January 1997.

[6] V. Bhanumathi and R. Dhanasekaran, "TCP variants -
A comparative analysis for high bandwidth – delay
product in mobile adhoc network," in 2nd
International Conference on Computer and
Automation Engineering (ICCAE), 2010, Singapore,
2010, pp. 600-604.

[7] D. Kliazovich and F. Granelli, “Cross-layer
congestion control in ad hoc wireless networks,” Ad
Hoc Networks, vol. 4, no. 6, pp. 687-708, November
2006.

[8] M. Allman, V. Paxson, and W. Stevens, “TCP
congestion control," RFC 2581(Proposed Standard),
Obsoleted by RFC 5681, IETF, September 2009.

[9] Y. G. Doudane, S. M. Senouci, and A. S. Ghaleb, "A
performance study of TCP variants in terms of energy
consumption and average goodput within a static ad
hoc environment," in Proceedings of the 2006
international conference on Wireless communications
and mobile computing, New York, NY, USA, pp.
503-508, 2006.

[10] V. Jacobson., “Congestion avoidance and control”,
SIGCOMM symposium on communications
architectures and protocols, pages 314-329, 1988. An
updated version is available via
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z.

[11] K. Fall and S. Floyd., “Simulation-based comparison
of Tahoe, Reno, and sack TCP”, in ACM computer
communications review, july 1996.

[12] Thomas Clausen, “Comparative Study of Routing
Protocols for Mobile Ad-Hoc NETworks”, INRIA,
March 2004.

[13] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end
congestion avoidance on a global internet,” IEEE
Journal on Selected Areas in Communication, vol. 13,
pp. 1465-1480, Oct. 1995.

[14] A. Huhtonen, “Comparing AODV and OLSR Routing
Protocols”, session on Internetworking, April 2004.

[15] D. Triantafyllidou and K. Al Agha, "Evaluation of
TCP performance in MANETs using an optimized
scalable simulation model," in 15th International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2007,
MASCOTS '07, pp. 31-37, November 2008.

[16] K.Kathiravan, S. Thamarai Selvi, and A.Selvam,
"TCP performance analysis for mobile adhoc network
using on-demand routing protocols," Ubiquitous
Computing and Communication Journal, pp. 370-376,
April 2007.

[17] A. Al Hanbali, E. Altman and P. Nain, “A survey of
TCP over mobile ad hoc networks,” Research Report
no. 5182, INRIA Sophia Antipolis research unit, May
2004

Paper ID: 14061403 392

