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Abstract: TCP was designed for wired networks and the sender assumes that packet loss is an indicator of network congestion, but this 
assumption may not apply  to Mobile Ad hoc Networks  (MANETs).  In Mobile Ad Hoc networks, performance of  the  standard TCP  is 
significantly degraded due  to characteristics of MANET such as route  failures due  to node mobility and  link errors. In  this paper,  the 
authors  investigate  the performance of TCP  variants  such as New Reno, SACK, TCP Tahoe and Vegas. Simulation  results  from  the 
implementation of different static scenarios have been obtained. Different routing protocols such as Ad hoc On-Demand Distance Vector 
(AODV) and Destination Sequence Distance Vector  (DSDV) have been  investigated  to obtain  the performance of TCP variants  in  this 
paper. 
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1. Introduction 
 
Mobile Ad hoc Networks (MANETs) are a collection of 
mobile nodes forming a dynamic autonomous network. 
Nodes communicate with each other without the 
intervention of centralized access points or base stations. 
In such a network, each node acts both as a router and as a 
host. A MANET has several advantages over traditional 
wireless networks, including ease of deployment, speed of 
deployment, and decreased dependence on a fixed 
infrastructure. Typical applications of MANETs include 
personal communication with laptops and PDAs, group 
communication at conferences and presentations, 
communication in military, between moving vehicles and 
in emergency situations. Though MANETs are becoming 
extremely popular with the advent of various types of 
mobile devices; rapidly changing connectivity, network 
partitions, higher error rates, security threats, frequent 
collision probability, bandwidth and power constraints 
together pose new problems in designing protocols. This 
paper is organized as follows. A brief introduction to TCP 
protocol operations is given in section II. In section III, an 
overview of routing protocols is presented. Section IV 
presents the simulation environment and topologies. 
Section V gives discussion and analysis. Finally, summary 
and conclusion of the paper are given in section VI. 
 
2. TCP (Transmission Control Protocol) 
 
Congestion Control Algorithm 
 
TCP is known as a full duplex protocol meaning each TCP 
connection provides a pair of byte streams in both 
directions. TCP implements the congestion control 
mechanism with each of these byte streams so that the 
receiver can limit the sender from transmitting more data 
in the network [5]. This  section  discusses  about  four 
intertwined  congestion  control  mechanisms:  slow  start, 
congestion avoidance, fast retransmit and fast recovery. A 
TCP  must  not  be  more  aggressive  in  sending  data  than 
these four algorithms allow. 
 

Slow Start and Congestion Avoidance 
 
The TCP sender employs the slow start and congestion 
avoidance algorithms to avoid more data to be sent in the 
network than it is capable of. For implementing these 
algorithms, two flow control variables, namely, the 
congestion window and the advertised window are 
included in each TCP connection state. The TCP sender 
imposes the congestion window while the receiver 
imposes the advertised window. The minimum of the 
congestion window and the advertised window regulates 
the data transmission. Besides, The slow start threshold 
(ssthresh), known as a state variable, is used to decide 
which one is to be used among the slow start or congestion 
avoidance algorithms for controlling the data transmission. 
During the beginning of the transmission, there are many 
unfamiliar conditions present in the network; therefore 
TCP needs to gradually discover the network by assessing 
the bandwidth and determining the available capacity [6]. 
This will eventually prevent the network from being 
congested with large bursts of data. 
 
Figure 1 shows the slow start and congestion avoidance 
mechanisms executed by the TCP. Upon establishing a 
new connection, TCP starts the slow start mechanisms and 
sets the congestion window size to one segment. The 
congestion window size is incremented by one for each 
ACK received by the TCP sender. Thus, 1 packet is sent in 
the first round trip time (RTT), 2 packets are for the 
second RTT, 4 packets are for the third RTT and continue 
incrementing exponentially. This is why slow start phase is 
also known as the exponential growth phase where slow 
start increases the window size by the number of segments 
acknowledged. This process will be continuing until either 
of the following situations occurs: 
 
1. An acknowledgment is not received for some 

segments. 
2. A predetermined slow start threshold value is reached. 
3. The congestion window size becomes equal to the 

receiver’s advertised window size. 
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If either of these events takes place, TCP enters the 
congestion avoidance (linear growth) phase. Each time an 
ACK is received, congestion avoidance suggests that the 
congestion window size should be increased by (segment 
size*segment size)/congestion window [8]. Here, segment 
size and congestion window is maintained in bytes. 
 

 
Figure 1 Slow start and congestion avoidance mechanism 

[7] 
 
Fast Retransmission and Fast Recovery 
 
Whenever a packet segment is transmitted, TCP sets a 
timer each time and thus ensures the reliability. TCP 
retransmits the packet, if it does not obtain any 
acknowledgement within the fixed time-out interval. The 
reason for not getting any acknowledgement within a 
specific duration is due to either the packet loss or the 
network congestion. Therefore the TCP sender implements 
the fast retransmit algorithm for identifying and repairing 
the loss. This fast retransmit phase is applied mainly based 
on the incoming duplicate ACKs. As TCP is not able to 
understand whether a packet loss or an out-of-order 
segment causes the generation of the duplicate ACK, it 
waits for more duplicate ACKs to be received [9]. Because 
in case of out-of order segment, one or two duplicate 
ACKs will be received before the reordered segment is 
processed. On the other hand, if there are at least three 
duplicate ACKs in a row, it can be assumed that a segment 
has been lost. In that case, the sender will retransmit the 
missing data packets without waiting for a retransmission 
timer to expire. 
 
After the missing segment is retransmitted, the TCP will 
initiate the fast recovery mechanism until a non-duplicate 
ACK arrives. The fast recovery algorithm is an 
improvement of congestion control mechanism that 
ensures higher throughput even during moderate 
congestion [6]. The receiver yields the duplicate ACK only 
when another segment is reached to it; therefore this 
segment is kept in the receiver's buffer and does not 
consume any network resources. This means, data flow is 
still running in the network, and TCP is reluctant to reduce 
the flow immediately by moving into the slow start phase. 
Thus, in fast recovery algorithm, congestion avoidance 
phase is again invoked instead of slow start phase as soon 
as the fast retransmission mechanism is completed. 
 
In our work we compare the four TCP variants which are 
as follows: 
 
TCP Tahoe 
New RENO 

SACK 
Vegas 
 
TCP Tahoe 
 
Modern TCP implementations contain a number of 
algorithms aimed at controlling network congestion while 
maintaining good user throughput. Early TCP 
implementations followed a go-back- model using 
cumulative positive acknowledgment and requiring a 
retransmit timer expiration to re-send data lost during 
transport. These TCPs did little to minimize network 
congestion. 
 
The Tahoe TCP implementation added a number of new 
algorithms and refinements to earlier implementations. 
The new algorithms include Slow-Start, Congestion 
Avoidance, and Fast Retransmit. The refinements include 
a modification to the round-trip time estimator used to set 
retransmission timeout values. All modifications have 
been described elsewhere. 
 
The Fast Retransmit algorithm is of special interest in this 
paper because it is modified in subsequent versions of 
TCP. With Fast Retransmit, after receiving a small number 
of duplicate acknowledgments for the same TCP segment 
(dup ACKs), the data sender infers that a packet has been 
lost and retransmits the packet without waiting for a 
retransmission timer to expire, leading to higher channel 
utilization and connection throughput. 
 
New-Reno TCP 
 
We include New-Reno TCP in this paper to show how a 
simple change to TCP makes it possible to avoid some of 
the performance problems of Reno TCP without the 
addition of SACK. At the same time, we use New-Reno 
TCP to explore the fundamental limitations of TCP 
performance in the absence of SACK. The New-Reno TCP 
in this paper includes a small change to the Reno 
algorithm at the sender that eliminates Reno's wait for a 
retransmit timer when multiple packets are lost from a 
window. The change concerns the sender' s behavior 
during Fast Recovery when a partial ACK is received that 
acknowledges some but not all of the packets that were 
outstanding at the start of that Fast Recovery period. In 
Reno, partial ACKs take TCP out of Fast Recovery by 
“deflating” the usable window back to the size of the 
congestion window. In New-Reno, partial ACKs do not 
take TCP out of Fast Recovery. Instead, partial ACKs 
received during Fast Recovery are treated as an indication 
that the packet immediately following the acknowledged 
packet in the sequence space has been lost, and should be 
retransmitted. Thus, when multiple packets are lost from a 
single window of data, New-Reno can recover without a 
retransmission timeout, retransmitting one lost packet per 
round-trip time until all of the lost packets from that 
window have been retransmitted. New-Reno remains in 
Fast Recovery until all of the data outstanding when Fast 
Recovery was initiated has been acknowledged. 
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SACK 
 
TCP with ‘Selective Acknowledgments’ is an extension of 
TCP RENO and it works around the problems face by 
TCP RENO and TCP New-Reno, namely detection of 
multiple lost packets, and re-transmission of more than one 
lost packet per RTT. SACK retains the slow-start and fast- 
retransmits parts of RENO. It also has the coarse grained 
timeout of Tahoe to fall back on; increase a packet loss is 
not detected by the modified algorithm.  SACK TCP 
requires that segments not be acknowledged cumulatively 
but should be acknowledged selectively. Thus each ACK 
has a block which describes which segments are being 
acknowledged. Thus the sender has a picture of which 
segments have been acknowledged and which are still 
outstanding. Whenever the sender enters fast recovery, it 
initializes a variable pipe which is an estimate of how 
much data is outstanding in the network, and it also set 
CWND to half the current size. Every time it receives an 
ACK it reduces the pipe by 1 and every time it re- 
transmits a segment it increments it by 1. Whenever the 
pipe goes smaller than the CWD window it checks which 
segments are un-received and send them. If there are no 
such segments outstanding then it sends a new packet [11]. 
Thus more than one lost segment can be sent in one RTT.  
 
VEGAS 
 
Vegas is a TCP implementation which is a modification of 
Reno. It builds on the fact that proactive measures to 
encounter congestion are much more efficient than 
reactive ones. It tried to get around the problem of coarse 
grain timeouts by suggesting an algorithm which checks 
for timeouts at a very efficient schedule. Also it overcomes 
the problem of requiring enough duplicate 
acknowledgements to detect a packet loss, and it also 
suggests modified slow start algorithms which prevent it 
from congesting the network. It does not depend solely on 
packet loss as a sign of congestion. It detects congestion 
before the packet losses occur. However it still retains the 
other mechanism of Reno and Tahoe, and a packet loss can 
still be detected by the coarse grain timeout of the other 
mechanisms fail. 
 
3. Routing in MANET 
 
Routing protocols in MANET are categorized as: proactive 
and reactive routing protocols. In the following 
subsections a brief description for each of them is given. 
 
Proactive (Table-Driven) Routing Protocols 
 
In this category, routing protocols such as Destination 
Sequence Distance Vector (DSDV) [7] attempt to maintain 
consistent and up-to-date routing information from each 
node to every other node in the network. This kind of 
approach has the property of lower latency and higher 
overhead. In DSDV the routes to all destinations are 
readily available at every node at all times. Here messages 
are passed between nodes to maintain their routing table. 
The routing table of each node consists of the shortest 
paths to all destinations from it. Each routing table entry in 
DSDV is tagged with a sequence number which is 

provided by the destination node. This is used to avoid the 
count-to-infinity problem associated with distance-vector 
protocols. The messages used in DSDV to maintain 
routing table are: 
 
 Periodic update messages  
 Triggered update messages  
 
The periodic update messages are those in which the 
whole routing table is transmitted to all neighbors of a 
node, at regular intervals of time. Triggered update 
messages are transmitted when there is any change in 
network topology. In triggered update message only 
significant changes in routing table are transmitted 
between the nodes. 
 
Reactive (On-Demand) Routing Protocols 
 
In this category, routing protocols such as Ad hoc On-
Demand Distance Vector (AODV) [8] source-initiated on-
demand routing which creates routes only when desired by 
the source node. When a node requires a route to 
destination, it initiates a route discovery process within the 
network. In general, on-demand routing protocols are 
characterized by higher latency and lower overhead. 
AODV includes loop freedom and that link breakages 
cause immediate notifications to be sent to the affected set 
of nodes. Additionally, AODV has support for multicast 
routing and avoids the Bellman Ford "counting to infinity" 
problem. The use of destination sequence numbers 
guarantees that a route is fresh. 
 
AODV uses different messages to discover and maintain 
links. Whenever a node wants to try and find a route to 
another node, it broadcasts a Route Request (RREQ) to all 
its neighbors. The RREQ propagates through the network 
until it reaches the destination or a node with a fresh 
enough route to the destination, then the route is made 
available by unicasting a RREP back to the source. The 
algorithm uses hello messages (a special RREP) that are 
broadcasted periodically to the immediate neighbors. 
These hello messages are local advertisements for the 
continued presence of the node and neighbors using routes 
through the broadcasting node will continue to mark the 
routes as valid. If hello messages stop coming from a 
particular node, the neighbor can assume that the node has 
moved away and mark that link to the node as broken and 
notify the affected set of nodes by sending a link failure 
notification (a special RREP) to that set of nodes. 
 
4. Simulation Environment 
 
We have implemented our work i.e. Creation of MANET 
Scenario for NS-2 and then to analyze Different routing 
protocols with the use of Various performance matrices 
Like Packet Delivery Ratio, End to End delay, Residual 
Energy and Overall Throughput. In our case firstly we 
have created scenario file for IEEE 802.11 standard which 
has to be used along with our TCL Script than we have 
created a TCL script consist of various routing protocols in 
our case these are AODV and DSDV than a particular 
MANET scenario or topology in our case it consist of 50, 
75 and 100 static nodes with various TCP variants which 
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are NEW RENO, SACK, TCP TAHOE and VEGAS for 
Two Ray Ground model. 
 
Our implementation consists of typical installation process 
of ns-2 complexity of topography creation and a detailed 
understanding of AWK scripts. In our case the total 
environment size taken is of 2 KM.  
 
End to End Delay 
 
The end-to-end delay is the time needed to traverse from 
the source node to the destination node in a network. The 
end-to-end delay is measured in ms, The delay assesses the 
ability of the routing protocols in terms of use- efficiency 
of the network resources. 
 
End to End Delay for 50 nodes: Figure shows the End to 
End Delay under various protocols i.e. AODV and DSDV 
for the 50 nodes.  

 
Figure 2 End to End Delay for 50 nodes 

 
End to End Delay for 75 nodes:- Figure shows the End to 
End Delay under various protocols i.e. AODV and DSDV 
for the 75 nodes. 
  

 
Figure 3 End to End Delay for 75 nodes 

 
End to End Delay for 100 nodes:- Figure shows the End 
to End Delay under various protocols i.e. AODV and 
DSDV for the 100 nodes. 

 
Figure 4 End to End Delay for 100 nodes 

 
5. Analysis of End to End Delay 
 
From above figures which are 4.4, 4.5 and 4.6 shows the 
End to End Delay in ms for AODV and DSDV protocols 
with various node densities which are 50, 75 and 100 
nodes. From there it is clear that for NEWRENO End to 
End Delay of AODV very large as compare to DSDV for 
50 nodes but when we analyze for 75 nodes and 100 nodes 
AODV much better than DSDV, when we analyze for 50 
nodes and 75 nodes AODV have small End to End Delay 
as compare to DSDV for SACK, TCP TAHOE and 
VEGAS. But when the node density increased End to End 
Delay of ADOV with SACK and VEGAS increased as 
compare to DSDV and for TCP TAHOE DSDV remain 
better as compare to AODV. 
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Throughput 
 
The average rate at which the data packet is delivered 
successfully from one node to another over a 
communication network is known as throughput. The 
throughput is usually measured in bits per second 
(bits/sec). A throughput with a higher value is more often 
an absolute choice in every network. 
 
Throughput for 50 nodes: Figure shows the Throughput 
under various protocols i.e. AODV and DSDV for the 50 
nodes. 

 
Figure 5 Throughput for 50 nodes 

 
Throughput for 75 nodes: Figure shows the Throughput 
under various protocols i.e. AODV and DSDV for the 75 
nodes. 

 
Figure 6 Throughput for 75 nodes 

 
Throughput for 100 nodes: Figure shows the Throughput 
under various protocols i.e. AODV and DSDV for the 100 
nodes. 
 

 
Figure 7 Throughput for 100 nodes 

 
6. Analysis of Throughput 
 
From above figures which are 4.7, 4.8 and 4.9 shows the 
Throughput for AODV and DSDV protocols with various 
node densities which are 50, 75 and 100 nodes. From there 
it is clear that the overall Throughput of DSDV protocol 
with Vegas is good as compare to the other variants with 
AODV and DSDV. So we analyze that the DSDV is better 
as compare to AODV protocol in terms of Throughput. 
 
7. Conclusion 
 
From our Result it is clear that the TCP variant SACK is 
best between these four variants along with VEGAS is 
burst variant in terms of END to END Delay and 
Throughput. When we analyze Protocols we cannot 
analyze clearly that which one is better because with 
different scenario both protocols gives better performance, 
but when we analyze for END to END Delay and 
Throughput DSDV better for high node density and 
AODV gives better results for low and moderate node 
density. 
 
8. Future Scope 
 
We have done the work of TCP variants comparison for 
MANET scenario the same can be done on WSN scenario 
as well as on some other protocols also.  
 
References 
 
[1] S. Senouci, and G. Pujolle, “Energy efficient 

consumption in wireless ad hoc networks” IEEE 
ICC2004 (International conference on 
communications), Paris JUNE 2004. 

[2] M. Zorzi and R. Rao, “Energy Efficiency of TCP in a 
local wireless environment “mobile networks and 
applications,, vol. 6, no. 3, July 2001. 

[3] S. Agrawal and S. Singh, “An Experimental Study of 
TCP’s Energy Consumption over a Wireless Link” 
4th European personal Mobile Communications 
Conference, Feb 20-22, 2001, Vienna Austia. 

[4] H. Singh and S. Singh, “Energy consumption of TCP 
Reno, New Reno, and SACK in multi-hop wireless 

Paper ID: 14061403 391



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 7, July 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

networks”, in ACM SIGMETRICS 2002, June 15-19 
2002. 

[5] W. Stevens, “TCP slow start, congestion avoidance, 
fast retransmit and fast recovery algorithms," RFC 
2001, IETF, January 1997. 

[6] V. Bhanumathi and R. Dhanasekaran, "TCP variants - 
A comparative analysis for high bandwidth – delay 
product in mobile adhoc network," in 2nd 
International Conference on Computer and 
Automation Engineering (ICCAE), 2010, Singapore, 
2010, pp. 600-604. 

[7] D. Kliazovich and F. Granelli, “Cross-layer 
congestion control in ad hoc wireless networks,” Ad 
Hoc Networks, vol. 4, no. 6, pp. 687-708, November 
2006. 

[8] M. Allman, V. Paxson, and W. Stevens, “TCP 
congestion control," RFC 2581(Proposed Standard), 
Obsoleted by RFC 5681, IETF, September 2009. 

[9] Y. G. Doudane, S. M. Senouci, and A. S. Ghaleb, "A 
performance study of TCP variants in terms of energy 
consumption and average goodput within a static ad 
hoc environment," in Proceedings of the 2006 
international conference on Wireless communications 
and mobile computing, New York, NY, USA, pp. 
503-508, 2006. 

[10] V. Jacobson., “Congestion avoidance and control”, 
SIGCOMM symposium on communications 
architectures and protocols, pages 314-329, 1988. An 
updated version is available via 
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z. 

[11] K. Fall and S. Floyd., “Simulation-based comparison 
of Tahoe, Reno, and sack TCP”, in ACM computer 
communications review, july 1996. 

[12] Thomas Clausen, “Comparative Study of Routing 
Protocols for Mobile Ad-Hoc NETworks”, INRIA, 
March 2004. 

[13] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end 
congestion avoidance on a global internet,” IEEE 
Journal on Selected Areas in Communication, vol. 13, 
pp. 1465-1480, Oct. 1995. 

[14] A. Huhtonen, “Comparing AODV and OLSR Routing 
Protocols”, session on Internetworking, April 2004. 

[15] D. Triantafyllidou and K. Al Agha, "Evaluation of 
TCP performance in MANETs using an optimized 
scalable simulation model," in 15th International 
Symposium on Modeling, Analysis, and Simulation of 
Computer and Telecommunication Systems, 2007, 
MASCOTS '07, pp. 31-37, November 2008. 

[16] K.Kathiravan, S. Thamarai Selvi, and A.Selvam, 
"TCP performance analysis for mobile adhoc network 
using on-demand routing protocols," Ubiquitous 
Computing and Communication Journal, pp. 370-376, 
April 2007. 

[17] A. Al Hanbali, E. Altman and P. Nain, “A survey of 
TCP over mobile ad hoc networks,” Research Report 
no. 5182, INRIA Sophia Antipolis research unit, May 
2004 

Paper ID: 14061403 392




