
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Developing an Multi agent Integrated Development
Environment on Cloud Platform

Paritosh Kumawat1, Vinit Agarwal2

1Gyan Vihar School of Engineering and Technology, Suresh Gyan Vihar University,

Jagatpura, Jaipur, Rajasthan, India

2Suresh Gyan Vihar University, Jagatpura, Jaipur, Rajasthan, India

Abstract: The software field is quickly migrating over the desktop to the World Wide Web. The Web serves a interactive user interface
that enables ubiquitous access, quick collaboration, integrating the other online functions, and saves installation and configuration
setting on individual desktops. For developing different software’s, the Web provides a shift away from developing hub, and has the
guarantee of closer collaboration and advanced feedback via various innovations in Web-based IDE’s. Migrating these IDEs over the
Internet does not just include “porting” the desktop IDEs; a basic reassessment of the known IDE architecture is essential in order to
understand the full extent that the mixture of modern IDEs and the Internet can provide. This paper discusses challenges in research
and chances in this area, followed by a brief study of a web IDE implementation.

Keywords: Cloud, Agent Development, Clone-able Agent, Middleware.

1. Introduction

Software is migrating from the desktop machines to the Web
or the internet. Online services are quickly substituting the
basic wrapped and downloadable software articles. They
implement in the Cloud, and use the browser software as a
common UI that allows ubiquitous access, instant alliance,
integration with other online services, and avoids installation
and configuration on desktops.

Web-Oriented Software Development: It is common that the
various software development tools follow this fashion,
providing a Web-based pool for software development,
supported by cloud-based services and storage. Many other
software tools, which include issue tracking, version
management, and build farms for continuous integration, are
already given as Web-based services. Based upon the latest
developments in Ajax technologies, hugely improvised
JavaScript engines, and the coming of HTML5, there has
been a small but growing collection of browser-based code
editors.

Well developed integrated development environments
(IDEs) are still falling behind in this competition towards the
Web. Modern, desktop-based IDEs come with a wide
available range of software engineering tools, and provide a
platform for writing, maintaining, testing, building, running,
debugging, and deploying the software. They increase the
productivity of the developer by including many various
kinds of editorial services specific to the syntax and
semantics of any required language. These services guide the
developers in understanding and moving through the code,
they point developers to inconsistent or incomplete or hazy
areas of code, and they also assist with editing code by
giving automatic indentation, bracket insertion, and content
completion and much more interactive features. The
integration of complete tool sets for development of the
software and the development of code-specific editor
services took a impressive effort for the instant generation of

IDEs like Eclipse and Visual Studio. Moving the next
generation of IDEs to the Web is not just a topic of porting
or migrating desktop IDEs; a basic reviewing of the IDE
architecture is needed in order to realize the full potential
that the combination of improved IDEs and the Web can
provide.

The Web as a Software Making Platform. Being a platform
for software development, the Web provides with a
compelling combination of challenges and opportunities.

On the one hand, it possesses a distributed nature:
computational nodes (server’s vs. web browsers) have
distinctly varied computational capabilities; over the
browser-side, only JavaScript is properly supported;
resources are distributed across un-trusted networks, with
computing resources that may vanish and show up randomly
and communication that is many orders of magnitude slower
than inter-process communication.

On the other side, the Web also gives a new frontier for
software development. The interconnection of clients on the
Web enables closer cooperation between developers on a
project through joint workspaces providing real-time
collaborative modification and coordination of work. The
centralized configuration and compiling of the cloud makes
sure that all developers on a project use the same
environment, since there is no need to locally and
individually install new versions of the IDE, compiler, or
various testing tools. The combination with other features
enables user-extensible platforms based on embedded DSLs.
The extensively scalable resources of the cloud enable
speculative verification, compilation, and testing.

2. IDEs in the Desktop Era

From five decades, the first IDE was introduced, focusing
the language- BASIC [20]. The IDE was entirely based upon
command, and so did not appear much like the basic menu-

Paper ID: 0201514 1747

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

driven, graphical IDE's running today. Still, it has integrated
the source code modification, compilation, debugging, and
execution in a way very according to today’s IDE.

Over the past fifty years, desktop IDEs have improved
considerably, and are now very popular in today’s software
engineering practices. They give various tools for working
with a variety of languages, collaborating different facilities
for the version management, issue management, and so
much more. They scale to large projects, big teams, and can
be used with a variety of programming languages and tools
for software engineering.

3. IDE Components

Modern IDEs exclusively elevate developer productivity by
giving a vibrant user interface and tool support specialized
for software development. They provide basic means for
developing software and language-specific facilities for
working with a specific programming language.

General IDE facilities incorporate support for managing
source files, searching through projects, finding and
replacing text, and much more. They also include
collaboration with systems for version control, build
management, and issue tracking. The latter facilities can be

reiterated independently for a specific language, and usually
operate at the level of whole set of projects, not single files.

Language-specific facilities are editor services and tooling
customized towards a specific language. Modern IDEs often
support a few or more language-specific editor services for a
language, which includes the basic syntax highlighting, code
navigation, documentation popups, content completion,
(realtime) type checking and compilation, code outline view,
refactoring, code formatting and other forms of language-
specific support.

Figure 1 below gives an idea about various editor services in
a desktop-based IDE. By repeatedly parsing and analyzing
the source code, these services give quick feedback during
editing a program, for example by highlighting the possible
mistakes or giving suggestions to complete an expression.
Other different language-specific functionalities include
merged tools such as compilers, interpreters, and debuggers.

In the core of the modern IDE is the plugin model. It
provides a collective framework for extending the IDE with
new services. The user can install and upgrade the plugins
for his IDE installation. All plugins run inside the IDE
process, and share access to the same resources, such as the
workspace, the projects and the files on disk.

Figure 1: A Desktop IDE

4. Software Development in Context

Development of a Software and its maintenance is a highly
associative effort. The important role of efficient and exact
communication among the developers, developers and
testers, and developers and end-users is well prevalent. It is
also a well accepted reality that developers follow the path of
low resistance. If the easily available tools make
collaboration difficult, collaboration will happen less, or not
at all.
Except many achievements and innovations of desktop
IDEs, they still function within the limitations of the desktop
paradigm: individual developers work on different machines,
needing the installation, configuration, and maintenance of

separate IDE instances for each developer. In a way, the
desktop environment changes the developer workstation into
a warehouse. Communication with the outside world works
well for some aspects of development: software artifacts may
be moved to outside machines for deployment, source code
flows freely into and out of version control systems, issues
(bugs, feature requests) are recorded into established issue
trackers and day-to-day communication flows over instant
messaging and/or e-mail.

These “sharing pipelines” have usually been set up before
the project starts, and mixture is mostly limited to framework
that fit into these “pipelines”. A typical case where this
breaks down is when developer A has encountered a hard-to-
reproduce bug. Even if developer B wanted to help out,

Paper ID: 0201514 1748

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

recreating the exact state to trigger the problem on B’s
machine is usually so time-consuming as not to be worth the
effort. It is usually better to join forces at the physical
machine of developer A. None of the major IDEs provide
real-time collaborative features to mitigate this problem—
even though technology for doing so exists [5].

An analogy can be made in the case of authoring a
document. Co-writing a document using a traditional
desktop based word processor requires a substantial amount
of machinery and ceremony. The co-authors must agree on a
“protocol” for sharing documents among the participants, for
example partitioning of the document and timely exchanges
of the partitions by e-mail. A policy for conflict resolution
must exist when multiple authors have edited their own
copies of the same document and want to merge it. Contrast
this with a co-writing documents in Google Docs. The real-
time, online document collaboration offered by Google Docs
requires no setup, no ceremony. Every participants sees the
most up to date document at any time (modulo a few
milliseconds to seconds, due to network latency).
Desktop word processors such as Libre Office are now
acquiring similar collaborative editing features. This is not
because collaborative editing was impossible before, because
people write larger documents today, or because people did
not collaborate in the past. It is more likely because real-time
collaboration did not fit well in the silo-like mentality of the
desktop paradigm, where every machine is an island.

5. IDE Deployment and Installation

The desktop paradigm dictates the local deployment,
installation, and configuration of software on client
machines. The time and effort required for setting up an IDE
from scratch is not insignificant. We timed the setup process
for an Eclipse installation with plugins for an issue tracker, a
version control system, and a custom programming language
to be around 18 minutes, start to finish.

The next stage is to set up the development workspace. In
our experience, this is easily the most time-consuming part.
For larger applications, especially Java web applications, it
can take almost an hour to configure everything properly for
a skilled developer, even when all necessary plugins are
already present. This problem is exacerbated by Eclipse’s
relatively poor capabilities for sharing configurations
between workspaces, and non-existent support for safely
cloning workspaces.
Local deployment and installation imposes the burden of
maintaining and upgrading the installation on the developer.
While this allows the individual developer to manage the
risk and time involved in upgrades, the recurring costs of
upgrades are usually paid by all developers.

Resolving conflicting version requirements for plugins is a
well-known headache for most IDE users, as is intermittent
regressions due to accidentally incompatible plugin updates.

Once everything is set up, it might have to be redone, if the
developer works on more than one machine, and especially
if he works on more than one platform. Moving your
development workspace from the Windows machine at work

to the Linux machine at home requires installation of the
entire setup from scratch.

6. Migrating to the Web

In the following sections we report on our current experience
with proofs of concepts for realizing some of the
fundamental services of a web IDE (code editing services,
semantic analysis services, and execution services).
Migrating from the desktop to the Web may be likened to
solving a multivariable equation. The next sections outline
what the known variables are, i.e. where we can reuse
knowledge directly from the desktop paradigm, such as for
parsing and type checking. For other variables, we suggest
probable solutions based on analyses of the desktop
solutions in the context of a Web architecture. For yet other
variables, such as how to best design a distributed service
model for a web IDE, we can only offer some fundamental
research questions that might eventually lead to a solution.

Figure 2: Server Migration

7. Web-Based Code Editors

Crucial technologies that enable the implementation of Web
based code editors are (X)HTML, CSS, and JavaScript.
These are available in any modern browser and provide a
high degree of compositionality and adaptability for use
within different Web pages. By contrast, browser plugins
such as Flash and Java applets require an additional client
side installation step, and may not be supported on all
platforms such as portable devices. They also provide a
much lower degree of compositionality and adaptability.

Paper ID: 0201514 1749

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: Proof-of-concept a web based editor

8. Conclusion

Agent based softwares are an popularizing and rapidly
developing area under study. In the last ten years, a big
number of essential developments happened in the design
and development of software agent languages and over the
implementation of the multiple agent systems. In this brief
study area, we have concentrated our focus on a few key
concepts, languages, tools and the different platforms and
made a reference area to a large amount of body of literature.
We intended to state and focus on the essentially required
features of chosen languages, tools and platforms, instead of
criticizing them. We consider an honest classification by
gazing over the manner, agent programming languages are
utilized during the process of their system development. On
one side, we all can find agent.

languages very much useful for developing the agents that
can be used as key building blocks for the deployment of
complex shared applications, commonly based upon the
agent or other appropriate middleware platforms. However,
these languages are not useful immediately for developing
real systems, but are rather mostly deployed for research
work for understanding the complex systems using agent
architecture and various simulation tools, as agent simulation
languages. Note that this class of languages is very often
commonly forgotten by the today’s works that overview
developments in agent programming.

9. Future Scope

The Technology of cloud computing is rapidly growing over
time. By providing scalable server environment, everybody
nowadays is trying to switch over cloud platform, when it
comes to their server needs. The Integrated Development
Environment offered on web, needs to be handled
intelligently by a software program, in order to handle the
incoming requests from the clients. Hence there has to be a
middleware, or a broker kind of a program which handles the
privileges offered to various subscribers or clients. There has
to be an intelligent body acting between the clients and the

cloud servers. There generates a need for Software Agents.
Hence cloud offers a futuristic scope of nearly unlimited
server space, Software Agents also have their future when it
comes to handle the subscriber requests. These subscribers
are very large in number, and open multiple windows for
their running services, the Software Agents have to be
multiple or Clone-able.

References

[1] Atlas. http://280atlas.com/.
[2] N. Ayewah and W. Pugh. The googlefindbugsfixit. In

P. Tonella and A. Orso, editors, Nineteenth Int.
Symposium on Software Testing and Analysis, ISSTA
2010, Trento, Italy, July 12-16, 2010, pages 241–252.
ACM, 2010.

[3] K. Birman, G. Chockler, and R. van Renesse. Toward a
cloud computing research agenda. News, 40(2):68–80,
2009.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E.
Visser. Stratego/XT 0.17. A language and toolset for
program transformation. Sci. of Comp. Programming,
72(1-2):52–70, June 2008. Special issue on
experimental software and toolkits.

[5] L.-T. Cheng, C. R. B. de Souza, S. Hupfer, J.
Patterson, and S. Ross. Building collaboration into
IDEs. Queue, 1(9):40 – 50, Dec. 2003.

[6] Cloud9 IDE. http://www.cloud9ide.com/.
[7] CodeMirror. http://codemirror.net/, Apr. 2012.
[8] CodeStore Inc. Coderun. http://coderun.com, 2010.
[9] S. Efftinge and M. Völter. oAWxText - a framework

for textual DSLs. In Modeling Symposium, Eclipse
Summit, 2006.

[10] The google web toolkit documentation. http://code.
google.com/webtoolkit/, Apr. 2012.

[11] N. Fraser. Differential synchronization. In U. M.
Borghoff and B. Chidlovskii, editors, 2009 Symposium
on Document Engineering, Munich, Germany,
September 16-18, 2009, pages 13–20. ACM, 2009.

[12] C. Ghezzi and D. Mandrioli. Incremental parsing. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 1(1):58–70, 1979.

[13] L. Grammel and M.-A. Storey. The smart internet.
chapter A survey of mashup development
environments, pages 137 – 151. Springer-Verlag,
Berlin, Heidelberg, 2010.

[14] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Trans. Softw. Eng., 26(7):653–661, July
2000.

[15] The google web toolkit documentation. http://code.
google.com/webtoolkit/, Apr. 2012.

[16] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism SDF: Reference
manual. SIGPLAN Not., 24(11):43–75, 1989.

[17] Z. Hemel and E. Visser. Declaratively programming the
mobile web with mobl. In K. Fisher and C. V. Lopes,
editors, 2011 Int. conference on Object oriented
programming systems languages and applications,
OOPSLA 2011, pages 695– 712. ACM, 2011.

Paper ID: 0201514 1750

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[18] S. I and K.-H. A. Research agenda in cloud
technologies. http://arxiv.org/abs/1001.3259. LSCITS
technical report, 2010.

[19] jsCoder IDE for the Apple iPhone. http://stuff.
techwhack.com/9946-jscoder.

[20] jsFiddle – an online editor for the web. http://jsfiddle.
net.

Author Profile

Paritosh Kumawat, born on August 23 1990, in Jaipur,
Rajasthan; pursued B.Tech. in Information Technology from
Suresh Gyan Vihar University, Jaipur, and currently
pursuing M.Tech in Software Engineering from Suresh Gyan
Vihar University, Jaipur, Rajasthan, India.

Vinit Agarwal is a Jaipur based Asst. Professor in Suresh
Gyan Vihar University, Jaipur, in the Department of
Computer Science.

Paper ID: 0201514 1751

