
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Multi-Processor Based Intelligent Industrial
Monitoring and Control System Based on µCOS-II

and Wireless Sensor Networks

Tinotenda Zwavashe1, Dr. D. Vasumathi2

1M.Tech Student, ECE Department, Jawaharlal Nehru Technological University Hyderabad, AP, India
2Professor, CSE Department, Jawaharlal Nehru Technological University Hyderabad, AP, India

Abstract: This paper is based on my M Tech project which shares the same title as this paper. It presents a model which illustrates how
we can incorporate a Real Time Operating System (RTOS) into an Industrial setup whereby a sensor node resides in the field where
processing is carried out and a Master or Control station resides in a control room and the two communicate using a wireless protocol.
The RTOS is meant to provide predictability, faster time response and high performance among other wide provisions. The RTOS used
to implement this model is µCOS-II (Microcontroller Operating System) from J Labrosse. It is a pre-emptive kernel where the highest
priority task in the ready queue is executed first. Thus faster processing of control commands and real time logging of data channeled by
sensor node to control station is expected as a result of incorporating the operating system rather than use of a super loop.

Keywords: Monitor and Control, Zigbee, uCOS-II RTOS, LPC2148, PIC16F877A, Task Priority, Touch screen, Graphical LCD, kernel
objects

1. Introduction

As the complexity in industrial structures varies from very
small to quite complex systems, many methods are coming
into play by which controller systems can be implemented.
Also there has been a huge advancement in the control
process as some systems comprise quite a large number of
tasks to be centrally controlled from a common point. In such
a scenario it is common that some tasks might need
immediate attention once they enter a stage where CPU
attention is needed. But remote monitoring means that data
has to be captured and relayed through some external port of
the controller, be it serial, parallel, USB or any other port.
Thus response to incoming data/commands or outgoing
data/commands can be accomplished by use of interrupts.
However not all tasks and events are externally generated
and can be easily responded to using interrupts. In some
cases some internal tasks might need prompt action once they
request execution time. In such situations Real time
Operating Systems (RTOS) come into play. An RTOS
enables the assignment of priorities, priority inheritance,
priority conversions and use of many kernel objects to ensure
that tasks of high priority are executed in a timely manner.
For serial data response some of the options are polling and
interrupts but they do not provide deterministic behavior to
the system as the number of tasks requiring CPU time
increases. An analysis on the efficiency of priority
assignment was done in [10] for the cases of polling,
interrupts and uCOS-II. This design is a follow up to the
analysis in [10] and aims at porting uCOS-II into an ARM
based microcontroller and come up with a system with a high
response and with a provision for easy communication
between tasks which subsequently increases system
efficiency and response.

2. Existing Designs

Several designs have been carried out in line with wireless
sensor networks, Real Time Operating Systems and
Environmental Monitoring and /or Control. Briefly I shall
look at some of these designs, see how they can be expanded
and modified or demonstrated from another point of view,
for example by use of different hardware, software, operating
systems and design techniques. Then I will try to illustrate
the uniqueness of the design which I am going to carry out in
relation to the previously carried out pieces of work.

Monitoring and Control has been implemented but for an
Agricultural Environment. [1]. In this system although it has
been considered to provide real time monitoring and control,
it however lacks a real time operating system to manage the
various tasks. The system implements a PC as the main
control center for visual monitoring and to input control
commands. There are several nodes which pass data to a
master node so that the master can pass data to Ethernet for
online control. It can be seen that all the nodes including
master node have implemented the ARM microcontroller
(LPC2148). The system also uses Zigbee protocol for inter
node communication.

Implementation of touchscreen based zigbee wireless
network for microcontroller to microcontroller
communication has been implemented without the use of an
RTOS [4] since a single task has to be executed. The
implementation involves one way communication and no
complex processing is required.

A real time operating system has been implemented in [2].
The implementation has incorporated RTLinux as the RTOS
and it is ported into the coordinator node. The coordinator
node has been designed using the ARM 9 (AT91RM9200)
microcontroller whilst all sensor nodes use ARM 7

Paper ID: 0201584 2147

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

(LPC2129) microcontrollers. Sensor nodes communicate
with the coordinator through a Zigbee protocol and the
coordinator is connected to a PC for user interface. No other
user interface peripherals are connected at the coordinator.
The system has managed to reduce power consumption by
providing a QUERY and RESPOND scenario such that there
is no continuous transmission of data from sensor nodes to
coordinator /master node but data is provided on demand.
Thus sensor nodes are provided with control capabilities so
as to monitor deviations from set values. Faults at the sensor
nodes may take longer to detect since user monitoring is done
on demand and the coordinator may take longer to detect a
faulty node. However, the system has proved to be versatile
in wireless sensor situations where power preservation is of
prime importance.

Research challenges in Wireless Sensor and Actuator
Networks targeting industrial automation have been outlined
[3]. Amongst the several challenges are the issues of
scalability and Latency/ Timely processing. Real time
processing requires that data be processed quickly since its
validity is of limited duration. Scalability dictates that the
system should support various network sizes without
compromising on system performance. Thus the research
which is to follow will try to cater for this by use of µCOS-II
which is a scalable Real Time OS which can accommodate
varying number of tasks and which can ensure real time
processing of data by task prioritization and synchronization.

Zigbee based communication in industrial systems is also
implemented but with the main focus being towards
miniaturization of the sensor node [5]. The node should be
wearable, washable and economic and detects ultra violet
radiation and dust. The microcontroller and radio are
integrated into a transceiver which communicates via zigbee
with a gateway which subsequently sends data to server via
internet.

3. Proposed System

The proposed system comprises a Master node controlled by
the LPC2148 microcontroller. This is a controller having an
ARM7TDMI based processor. The RTOS is ported into this
microcontroller and control commands can be input from this
node. Real time temperature values, voltage levels at sensor
node and intrusions which are relayed wirelessly from sensor
node are, also displayed on a Graphical LCD (GLCD). The
master node is equipped with a touch screen module which
acts as the input device for user input. Selection between
various parameters such as display of temperature, voltage,
switching ON/OFF of motor on sensor node can be done
using this touch screen. The master node communicates with
sensor node using Xbee modules which provide a Zigbee
communication protocol. The Xbee modules are connected to
UART1 of the LPC2148 and thus, data is relayed to and from
the microcontroller serially. At the other end of the
communication Architecture lies the sensor node. The node
is controlled by the PIC16F877A microcontroller which is an
8 bit microcontroller from Microchip. The node consists of
temperature sensor, intrusion detector, buzzer (alarm), Motor
actuator, and voltage level detector. The temperature values
and voltage levels are captured and detected through the

Analogue to Digital Converter respectively and send to the
Master node via Zigbee. For PIC, the Xbee modules are
connected to the USART port which is again a serial
communications port. The author has borrowed concepts on
zigbee wireless communication from some earlier work in [7]
and [9]. Figure 1 shows the block architecture of the Master
Node while Figure 2 illustrates the Sensor Node.

Figure 1: Master node and associated hardware peripherals

Figure 2: Sensor node and associated hardware peripherals

4. System Functionality

The master node contains a Real Time Operating System for
task control. Sensor Node transmits real time temperature
and voltage values to the sensor node over the wireless
network. Also warning signals are send for example in cases
of intruder detections. At the master node all data send is
displayed on a GLCD. The user can choose the data to
display, e.g., voltage or temperature or check max and min
temperatures by making inputs through the touch screen
module. These values, in case of voltage and temperature, are
displayed in the form of a line graph such that recent and
existing fluctuations in these values can be easily viewed.
The system has included a supplementary visual display unit
in the form of a PC where data values are also relayed for
display and from where control commands to the sensor node
can also be entered.

Thus it can be seen that quite a number of tasks are to be
executed by the master node. Some of these tasks are:

Paper ID: 0201584 2148

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Serial data receive from sensor node task
 Serial data receive from PC task.
 Task to display temperature values
 Task to display voltage values
 Task to check touch on touch screen.
 Tasks to send commands to serial ports

These tasks are to be managed by the real time operating
system and priority assignments has been implemented and
kernel objects used for task synchronization and task
communication. At the sensor node a provision of a display
has also been implemented such that operators in the vicinity
can view the system behavior and state. Real time
temperature and voltage values are displayed and in cases of
too low voltages or temperatures warning messages are also
displayed. If temperature exceeds some set point the motor is
switched ON. Motor switch ON/OFF can also be done
remotely from the master node. Voltage level detector is
essential in cases where the sensor node might be powered
from a battery source such that there is depletion of power
over time.

5. Real Time Operating System- µCOS-II

As stated earlier on the system employs uCOS-II as the
RTOS at the master node.

Figure 3: µCOS-II Software and Hardware setup

The diagram of Figure 3 shows the software and hardware
architecture of uCOS-II. The user is responsible for the
development of the application software and this is
dependent on the system being developed. The user also
declares the configuration settings and these are dependent
on number of tasks, desired stack sizes, priority levels, and
operating system objects being used and so on. Depending on
the processor being used, source code for processor specific
code and processor independent code can be obtained from

the micrium website. Thus to port uCOS-II into hardware the
port can be found on the website and if not available for a
specific processor then one has to develop it. This port is
modified to suit the needs of the application being developed.

5.1 Tasks and Task States
The general concept and goal of real time operating systems
is on finding out how we can make tasks execute in the
desired time frame. Thus it is important that we briefly look
at what a task is and the states in which a task can be in a
system. A task is also called a thread. It is a program which
assumes that it has the CPU all by itself. A maximum of 56
user tasks can be created in uCOS-II. Each task is assigned a
unique priority ID. Thus priority numbers can be used to
identify tasks. On top of being assigned its own priority, each
task is also assigned its own set of registers and its own stack
area (memory). When creating a task it should be an infinite
loop and it can be in any one of the 5 states namely; waiting,
dormant, ready, running or interrupt service routine (ISR).
These task states are illustrated in Figure 4.

Figure 4: Task States and transitions from one state to

another

Ready: A task is said to be ready when it can execute but is
waiting for a higher priority task which is already executing
to finish. The queue can have many tasks and of these a
higher priority one will execute first.

Dormant: this state corresponds to a task which is residing
in memory and has not been made available to the multi-
tasking kernel. An example is a task deleted using
OSTaskDel ().

Running: A running task is the one which is under
execution, that is, the one which has control of the CPU at
that particular time.

Waiting: A task is in a waiting state when it is waiting for a
certain event to happen. An example is a task which has
called a delay. It goes to wait state until that delay expires
(unless if the delay is cut short) before going to the ready

Paper ID: 0201584 2149

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

queue. A task can also be waiting for a shared resource to be
available.

ISR: A task is in ISR state when it is stopped so that the
CPU can service an interrupt. After the interrupt has been
serviced, that same task continues execution if it is still the
highest priority task. Else, the highest priority task in the
queue will run.
A task can be created using two functions. These are
OSTaskCreate (arguments) or OSTaskCreateExt
(arguments).

5.2 Task Synchronization and task communication
Synchronizing of tasks and communication between tasks is
essential since some tasks are dependent on the outcomes of
other tasks and also some resources may be shared between
tasks. Thus an efficient way for tasks to signal each other and
use shared resources should be available. In uCOS-II this is
accomplished by use of various kernel objects. In this design
this has been accomplished using semaphores and mailboxes.

Semaphores: Two types of semaphores exist namely binary
and counting semaphores. The former can have a value of 1
or 0 and the later any value from 0 onwards. To illustrate
their use we shall consider a scenario whereby the display
tasks will run only if data has been received serially. Thus
the UART receive task should signal the other tasks to run
only is it has received some data. In uCOS-II a semaphore is
considered as an OS event and should be declared and
created before being used. The model in Figure 5 shows the
communication and synchronization of the three tasks;
UART receive, LDC Display and PC Display.

Figure 5: Task Synchronization and communication using

semaphores

Mailbox: A mailbox is another kernel object. Tasks can send
pointer variables to each other and these will point to some
application data structures which contain a message. Just like
semaphores, mailboxes need to be created before being used.
Five services are available in uCOS-II to access mailboxes
and these are:

OSMboxCreate ()
OSMboxPend ()
OSMboxPost ()
OSMboxAccept () and
OSMboxQuery ()

Mailboxes have been used in this application to send
messages to run certain tasks and send acknowledgements
that some specific operation has to be or been performed. In
the display of temperature and voltage values upon screen
touch on touch screen, mailboxes have been used in the
implementation. Figure 6 illustrates mailbox operations.

Figure 6: Code snippets showing mailbox operations

6. Testing and Results

This paper is based on the design of the system which
employs a real time operating system for the coordination
and control of tasks in a multi-tasking system. As stated
earlier on the strengths of the RTOS has been looked at
through hardware simulations in [10]. As such, the result
section will focus on exhibiting the prototype on which the
system was implemented.

Figure 7: Sensor and Actuator Node using PIC16F877A

Figure 7 shows the prototype version of the sensor node and
its associated hardware connections and the Xbee module
used to provide wireless communication between the sensor
node and the master node. Figure 8 and 9 shows the master
node with the LPC2148 board connected to the GLCD and

Paper ID: 0201584 2150

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

touch screen module for display and input devices
respectively.

Figure 8: Master Node containing the RTOS

The diagram in Figure 9 is a closer view showing the display
of temperature on the GLCD in the form of a line graph and
the small fluctuations in temperature values where it is
fluctuating between 30 and 33oC.

Figure 9: Temperature Display on GLCD and Touch screen

Panel for selection.

7. Conclusions and Future Work

The design and implementation was successfully carried out.
The prototype gave appropriate responses which illustrates
that the tasks communicated and synchronized correctly and
that priority assignments made sure that tasks requiring
immediate CPU time got that opportunity. As a basis for

future expansion we can see that the system can be applicable
in a variety of applications where some of these applications
may be non-industrial. In some of these cases we find that the
sensor node might need powering from a battery source and
methods to optimize power consumption might be essential.
The system can also be expanded to include several sensor
nodes to fully utilize the power of the RTOS since uCOS-II
can accept up to 56 application tasks. The analysis and
design can also be done on a non-pre-emptive kernel and
observe the complexity in the design process and the
efficiency of non-pre-emptive compared of pre-emptive
kernel.

References

[1] G.M. Kumari and Dr V Devi, “Real Time Automation

and Monitoring System for Modernized Agriculture”,
International Journal of Review & Research in Applied
Sciences and Engineering vol.3, March 2013.

[2] Manoj Kolam & S. R. B. Shree Shree, “Zigbee Wireless
Sensor Network for Better Interactive Industrial
Automation”, IEEE, 2011.

[3] J. Akerberg et al, “Future Research Challenges in
Wireless Sensor and Actuator Networks targeting
Industrial Automation “, IEEE, 2011.

[4] M. R. Reddy et al. “Touchscreen and Zigbee based
Wireless Communication Assistant”, International
Journal of Combined Research and Development vol.1,
Issue 4, August 2013.

[5] Elisa Pievanelli et al, “Dynamic Wireless Sensor
Networks for Real Time Safeguard of workers exposed
to physical agents in construction sites”, IEEE, 2013.

[6] M. R. Reddy et al, “Touchscreen and Zigbee based
Wireless Communication Assistant”, International
Journal of Combined Research and Development vol.1,
Issue 4, August 2013.

[7] T. Zwavashe, “A Zigbee Based Inter-Processor
Communication Architecture for the Management of
Bedchambers for the Physically Challenged”,
International Journal of Innovative Research in
Computer and Communication Engineering, vol2,
issue4, April 2014.

[8] MaxStream Inc, “XbeeTM Series OEM RF Modules
Product Manual v1.x.1x-Zigbee Protocol”, 2007.

[9] T. Zwavashe and R. Duri, “Integrating GSM and Zigbee
Wireless Networks for Smart A2 farming Enterprises in
Zimbabwe”, International Journal of Science and
Research, Vol3, Issue6, June 2014

[10] T. Zwavashe, “Polling, Interrupts & µCOS-II: A
Comparative Timing Response Simulation Model for
Wireless Processor-to-Processor Communication”,
International Journal of Science and Research, Issue3
vol7, July 2014.

Author Profile

Tinotenda Zwavashe: Attained his B.Eng.
Degree in ECE from NUST, Zimbabwe in 2010.
Currently he is studying towards M. Tech
Embedded Systems at JNTUH, India. His
research interests are in the area of

Paper ID: 0201584 2151

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Microcontroller Design, Wireless and Sensor networks,
RTOSes and SCADA systems.

Dr D. Vasumathi: Ph.D from JNTU Hyderabad.
She is currently working as Professor in
Department of CSE, JNTUCEH. Her research
interests include Data Mining, Computer
Networks, Web Mining, Data Warehousing,

Wireless Sensor networks and Microcontroller Design.

Paper ID: 0201584 2152

