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Abstract: The evolution of data over the years has since lead to the need to have efficient processing and storage techniques. We know 
live in the era in which BigData is one of the most talked issues together with the problems associated with it. This has lead to the 
development of Apache Hadoop and NoSQL databases to alleviate these problems. MapReduce has been the backbone and heart of 
Apache Hadoop a software tool designed for the distributed processing and storage of these massive datasets. Many researchers over the 
years have since tried to find ways to improve the MapReduce process performance and so many techniques have been designed. In this 
paper we expose all these techniques in an effort to reveal other research avenues in this domain. 
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1. Introduction 
 
Big data is the collection of large and complex data sets that 
are difficult to process using on-hand database management 
tools or traditional data processing applications. The 
invention of online social networks, smart phones, fine tuning 
of ubiquitous computing and many other technological 
advancements have led to the generation of multiple 
petabytes of both structured, unstructured and semi-
structured data. These massive data sets have lead to the birth 
of some distributed data processing and storage technologies 
like Apache Hadoop and MongoDB[1]. 
 
In the years building up to 2004 [1] Google embarked on a 
project to set up their very own proprietary database which 
they named [3]"Big Table". Big Table was an instant hit and 
it solved many of the problems with relational databases. In 
2006 Yahoo built the first prototype called Hadoop and in 
2008 they went commercial. Amongst the companies that 
started implementing this technology, Facebook was the first 
to join followed by Twitter and the others [4]. 
 
Map Reduce is a programming model for processing massive 
datasets on distributed clusters such as Hadoop Large 
datasets are split into blocks and are then processed by the 
datanodes in parallel. Hadoop MapReduce is a software 
framework for easily writing applications which process vast 
amounts of data (multi-terabyte data-sets) in-parallel on large 
clusters (thousands of nodes) of commodity hardware in a 
reliable, fault-tolerant manner. 
 
A MapReduce job usually splits the input data-set into 
independent chunks which are processed by the map tasks in 
a completely parallel manner. The framework sorts the 
outputs of the maps, which are then input to the reduce tasks. 
Typically both the input and the output of the job are stored 
in a file-system. The framework takes care of scheduling 
tasks, monitoring them and re-executes the failed tasks [6]. 
  

 
Figure 1: MapReduce Illustration 

 
Apache Hadoop consists of five daemons [5] which are also 
known as processes and these are shown in Figure 2 and 
these are: 
 
 NameNode - This daemon stores and maintains the 

metadata for HDFS. 
 Jobtracker - Manages MapReduce jobs, distributes 

individual tasks to machines running the Task Tracker. 
 TaskTracker - Responsible for instantiating and monitoring 

individual Map and Reduce tasks. 
 Datanode- Stores actual HDFS data blocks. 
 Secondary NameNode - Performs housekeeping functions 

for the NameNode. In fact when the NameNode goes 
down, the secondary NameNode will be promoted to 
become the NameNode. 

 
NameNode, secondary NameNode and Jobtracker daemons 
run on the master nodes while Datanode and TaskTracker run 
on the slave nodes. A Java piece of code (e.g. wordcount) 
will be converted into a jar (java archive file) before it is 
submitted to Hadoop as a new task.  
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Figure 2: Apache Hadoop daemons 

 
The MapReduce framework consists of a single master 
JobTracker and one slave TaskTracker per cluster-node. The 
master is responsible for scheduling the jobs' component 
tasks on the slaves, monitoring them and re-executing the 
failed tasks. The slaves execute the tasks as directed by the 
master [5]. 
 
The rest of the paper is organised as follows: Section 2 
describes usage of a distributed cache. Section 3 describes 
usage of a Hierarchical approach. Section 4 describes usage 
of Accountable MapReduce in the cloud. Section 5 describes 
Data Aware Caching. Section 6 describes usage of a Shared 
Disk. The future work has been described in section 7 
followed by conclusion and citations. 
 
2. Distributed Cache 
 
File access has always been a problem in real time as far as 
performance is concerned. This usual adds a delay in the 
MapReduce process especially in real time. Zhang et al 
analysed preconditions of dealing with this problem 
considering the aspects of requirements, hardware, software, 
and network environments in the cloud. Then they described 
the design and implementation of a novel distributed layered 
cache system built on the top of the Hadoop Distributed File 
System which is named HDFS-based Distributed Cache 
System (HDCache)[6]. 
 
They designed and implemented a distributed cache system 
on top of HDFS (Hadoop Distributed File System) in an 
attempt to accelerate person-specific data access in large-
scale real-time cloud services. Their novel HDCache system 
is based on the following factors, prerequisites and design 
considerations: 
 
A. On-the-top Method rather than Built-in Method  
 
They designed a distributed cache which is rather 
independent of the HDFS so that the HDFS is not overloaded 
to improve performance [6]. 
 
 
 
 

B. Network I/O rather than Disk I/O 
 
Cloud computing systems are usually built on the top of low-
cost commercial hardware connected by Gigabit Ethernet. In 
practice, the network I/O rate is about 100MB/s that is 
approximately equal to the disk I/O rate. On one hand, a real-
time cloud computing system stores large amounts of data, on 
the other hand, data access of the system usually appears in 
the way of sudden and random bursting, which evidently 
slows down the disk scheduling performance resulting in the 
read efficiency being no more than 50MB/sec .Consequently, 
accessing data over the Ethernet usually is a better choice 
than reading them from an HDFS Datanode disk. If the cloud 
computing system is deployed on top of the high-speed 
networks such as 10-Gigabit Ethernet, InfiniBand and 
Myrinet, network I/O obviously has huge advantages 
compared to disk I/O [6]. 
 
C. Layered Data Accessing Model 
 
There are three data access layers in the system when 
building a cache on the top of HDFS. The first layer is in 
memory cache in which the data access rate is approximately 
equal to the memory unit access rate (ignoring OS memory 
swap). The second layer is local disk snapshot and remote in 
memory cache with a data access rate about 50~100MB/s. 
The bottom layer is HDFS where all data are stored in 
DataNodes with the accessing rate influenced by many 
factors such as data load, concurrency of threads and network 
traffic etc. Applications using distributed cache firstly 
retrieve the desired file in DRAM cache, and if missing, the 
cache service will contact with another cache service for the 
file or load it from a local disk snapshot if existed. If the 
procedure still cannot get the desired file, the cache service 
requested by the client will load the file from HDFS [6]. 
 

 
Figure 3: Typical Network Topology of Deployment 
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3. Maximising MapReduce Process Using a 
Hierarchical Approach 

 
Zhiwei Xiao et al found out that Hadoop had limitations in 
exploiting data locality and task parallelism for multi-core 
platforms. Then they extended Hadoop with a hierarchical 
MapReduce scheme. An in-memory cache scheme is also 
seamlessly integrated to cache data that is likely to be 
accessed in memory. They proposed Azwraith, a hierarchical 
MapReduce approach aiming to maximize data locality and 
task parallelism of MapReduce applications on Hadoop. They 
discovered that there are multiple levels of data locality and 
parallelism in typical multicore clusters that could affect 
performance [7]. 
 
It has been identified that, the open-source implementation of 
MapReduce, Hadoop [7], makes use of the JVM runtime to 
run the actual MapReduce tasks, which is not the best way to 
explore the cache hierarchy and task parallelism existing in 
many multi-core based commodity clusters. Hadoop requires 
both key and value objects to implement the Hadoop 
Writable interface to support serialization and deserialization, 
causing extra objects creation and destroy overhead as well 
as memory footprint. 
 
There are also some applications that require processing the 
same piece of data several times or iteratively to get the final 
results. Although Hadoop exploits data locality with a single 
iteration of jobs by shifting computation to its data as much 
as possible, unfortunately, it does not consider data locality 
across multiple processing iterations, and thus requires the 
same data being loaded multiple times from the networking 
file systems to nodes that process the data. As a result of all 
these shortcomings Zhiwei Xiao et al designed Azwraith to 
counter them. 
 

 
Figure 4: Azwraith Architecture 

 
Azwraith, is a hierarchical MapReduce approach aiming to 
maximize data locality and task parallelism of MapReduce 
applications on Hadoop[4]. In the hierarchical MapReduce 
model of Azwraith, each Map or Reduce task assigned to a 
single node is treated as a separate MapReduce job and is 
further decomposed into a Map and a Reduce task, which are 
processed by a MapReduce runtime specially optimized on a 
single node. Specifically, Azwraith integrates an efficient 
MapReduce runtime for multi-core to Hadoop. 
 

To exploit data locality among nodes at networking level, 
Azwraith integrates an in-memory cache system that caches 
data in memory that will likely be reused again, to avoid 
unnecessary networking and disk traffics. Through the use of 
word count, gigasort algorithm and linear regression their 
experiments proved that Azwraith, their extension to Hadoop 
outperformed Hadoop.  
 
4. Accountable MapReduce in Cloud 

Computing 
 
Zhifeng Xiao et al proposed Accountable MapReduce, which 
forces each machine to be held responsible for its behavior. 
They set up a group of auditors to perform an Accountability 
Test (A-test) which will check all working machines and 
detect malicious nodes in real time. They tapped into a very 
sensitive area which is very much of great importance in 
improving the overall performance of MapReduce[8]. 
 
They introduced a component known as the Auditor Group 
(AG) which carries out Accountability Test to detect 
malicious nodes. Normally, as shown in Figure 5, cloud 
resource will be divided into multiple slices, each of which is 
rented by a customer. A slice is a group of working machines 
assigned to a customer. An AG manager is maintained for the 
entire cloud, and one AG for each slice that runs MapReduce. 
The reason of associating each slice with one AG is to 
conserve the privacy and independence of customers. 
 
The AG Manager is a coordinator that conducts AG creation, 
management, and disposal. After the AG manager becomes 
aware of the customer’s data size, timing, and other 
requirements, it will determine the AG size and then create 
an AG for the slice. Each AG is internally structured as a 
cluster. The head node is the Group Head (GH), and the 
member node is the Group Member (GM). The GH picks up 
workers as test targets randomly. The master has a protocol 
with the GH to provide all information needed for an A-test. 
The GH assigns A-test tasks to the available GMs, which are 
the actual machines that accomplish the tasks and report their 
status. 
 

 
Figure 5: Audit Group in Cloud Platform 

 
Accountable MapReduce comes in with a twofold form of 
benefit. Unauthorized tasks are not given a chance to execute 
and this will automatically improve the performance of 
MapReduce in the cloud. However, the drawback in this 
method is that sometimes false positives can distort 
everything. This is also introduced as an extra independent 
component which will be added on top of the inbuilt 
MapReduce such that the original set up of MapReduce is not 
altered as it may create some new problems [8]. 
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5. Data aware caching for BigData applications 
using MapReduce 

 
An observation regarding Hadoop and NoSQL database 
applications is that they generate and store a large amount of 
intermediate data [1], and this abundant information is 
thrown away after the processing finishes. Motivated by this 
observation, Yaxiong Zhao et al proposed a data-aware cache 
framework for big-data applications, which they called 
Dache. In Dache, tasks submit their intermediate results to 
the cache manager. A task, before initiating its execution, 
queries the cache manager for potential matched processing 
results, which could accelerate its execution or even 
completely saves the execution. A novel cache description 
scheme and a cache request and reply protocols are designed. 
They implemented Dache by extending the relevant 
components of the Hadoop project [9]. Testbed experiment 
results demonstrated that Dache significantly improves the 
completion time of MapReduce jobs and saves a significant 
chunk of CPU execution time. 
 

 
Figure 6: High level description of the architecture of Dache 
 
Dache requires only a slight modification in the input format 
and task management of the MapReduce framework, and 
applications need only slight changes in order to utilize 
Dache[9]. They implemented Dache in Hadoop. Testbed 
experiments showed that it can eliminate all the duplicate 
tasks in incremental MapReduce jobs and doesn't require 
substantial changes to the application code hence improving 
the overall performance of Hadoop. 
 
Dache identifies the source input from which a cache item is 
obtained, and the operations applied on the input. In the 
reduce phase, they devised a mechanism to take into 
consideration the partition operations applied on the output in 
the map phase. They also discovered a method for reducers to 
utilize the cached results in the map phase to accelerate their 
execution. They implemented Dache in the Hadoop project 
by extending the relevant components. Their implementation 
follows a non-intrusive approach, so it only requires 
minimum changes to the application code. 
 
6. Shared Disk BigData Analytics with Apache 

Hadoop 
 
For organizations which don’t need a horizontal, internet 
order scalability in their analytics platform, Big Data 

analytics can be built on top of a traditional POSIX Cluster 
File Systems employing a shared storage model. Anirban 
Mukherjee et al in their study compared a widely used 
clustered file system: VERITAS Cluster File System (SF-
CFS) with Hadoop Distributed File System (HDFS) using 
popular Map-reduce benchmarks like Terasort, DFS-IO and 
Gridmix on top of Apache Hadoop[10]. In their experiments, 
VxCFS could not only match the performance of HDFS, but 
also outperformed in many cases. This way, enterprises can 
fulfill their Big Data analytics need with a traditional and 
existing shared storage model without migrating to a different 
storage model in their data centers. This also includes other 
benefits like stability & robustness, a rich set of features and 
compatibility with traditional analytics applications. 
 
They gathered a credible reasoning behind the need of a new 
non-POSIX storage stack for Big Data analytics and 
advocate, based on evaluation and analysis that such a 
platform can be built on traditional POSIX based cluster file 
systems. They developed a file system connector module for 
SF-CFS to make it work inside Apache Hadoop platform as 
the backend file system replacing HDFS altogether and also 
have taken advantage of SF-CFS’s potential by implementing 
the native interfaces from this module. This scheme did not 
require any changes in the Map Reduce applications. Just by 
setting a few parameters in the configuration of Apache 
Hadoop, the whole Big Data analytics platform can be made 
up and running very quickly. 
 
The clustered file system connector module they developed 
for Apache Hadoop platform has a very simple architecture. 
It removes the HDFS functionality from the Hadoop stack 
and replaces it with VERITAS Clustered File System. It 
introduces SF-CFS to the Hadoop class by implementing the 
APIs which are used for communication between 
Map/Reduce Framework and the File System. This could be 
achieved because the Map-Reduce framework always talks in 
terms of a well-defined FileSystem [10] API for each data 
access. The FileSystem API is an abstract class which the file 
serving technology underneath Hadoop must implement. 
Both HDFS and their clustered file system connector module 
implement this FileSystem class, as shown in Figure 7. 
 

 
Figure 7: Architecture of SC-CFS Hadoop Connector 
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