
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Towards MapReduce Performance Optimization: A
Look into the Optimization Techniques in Apache

Hadoop for BigData Analytics

Kudakwashe Zvarevashe1, Dr. A Vinaya Babu2

1M Tech Student, Dept of CSE, Jawaharlal Nehru Technological University, Hyderabad, India
2Professor, Dept of CSE, Jawaharlal Nehru Technological University, Hyderabad, India

Abstract: The evolution of data over the years has since lead to the need to have efficient processing and storage techniques. We know
live in the era in which BigData is one of the most talked issues together with the problems associated with it. This has lead to the
development of Apache Hadoop and NoSQL databases to alleviate these problems. MapReduce has been the backbone and heart of
Apache Hadoop a software tool designed for the distributed processing and storage of these massive datasets. Many researchers over the
years have since tried to find ways to improve the MapReduce process performance and so many techniques have been designed. In this
paper we expose all these techniques in an effort to reveal other research avenues in this domain.

Keywords: MapReduce, big data, hadoop, processing, storage, NoSQL, techniques

1. Introduction

Big data is the collection of large and complex data sets that
are difficult to process using on-hand database management
tools or traditional data processing applications. The
invention of online social networks, smart phones, fine tuning
of ubiquitous computing and many other technological
advancements have led to the generation of multiple
petabytes of both structured, unstructured and semi-
structured data. These massive data sets have lead to the birth
of some distributed data processing and storage technologies
like Apache Hadoop and MongoDB[1].

In the years building up to 2004 [1] Google embarked on a
project to set up their very own proprietary database which
they named [3]"Big Table". Big Table was an instant hit and
it solved many of the problems with relational databases. In
2006 Yahoo built the first prototype called Hadoop and in
2008 they went commercial. Amongst the companies that
started implementing this technology, Facebook was the first
to join followed by Twitter and the others [4].

Map Reduce is a programming model for processing massive
datasets on distributed clusters such as Hadoop Large
datasets are split into blocks and are then processed by the
datanodes in parallel. Hadoop MapReduce is a software
framework for easily writing applications which process vast
amounts of data (multi-terabyte data-sets) in-parallel on large
clusters (thousands of nodes) of commodity hardware in a
reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into
independent chunks which are processed by the map tasks in
a completely parallel manner. The framework sorts the
outputs of the maps, which are then input to the reduce tasks.
Typically both the input and the output of the job are stored
in a file-system. The framework takes care of scheduling
tasks, monitoring them and re-executes the failed tasks [6].

Figure 1: MapReduce Illustration

Apache Hadoop consists of five daemons [5] which are also
known as processes and these are shown in Figure 2 and
these are:

 NameNode - This daemon stores and maintains the

metadata for HDFS.
 Jobtracker - Manages MapReduce jobs, distributes

individual tasks to machines running the Task Tracker.
 TaskTracker - Responsible for instantiating and monitoring

individual Map and Reduce tasks.
 Datanode- Stores actual HDFS data blocks.
 Secondary NameNode - Performs housekeeping functions

for the NameNode. In fact when the NameNode goes
down, the secondary NameNode will be promoted to
become the NameNode.

NameNode, secondary NameNode and Jobtracker daemons
run on the master nodes while Datanode and TaskTracker run
on the slave nodes. A Java piece of code (e.g. wordcount)
will be converted into a jar (java archive file) before it is
submitted to Hadoop as a new task.

Paper ID: 0201564 1933

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Apache Hadoop daemons

The MapReduce framework consists of a single master
JobTracker and one slave TaskTracker per cluster-node. The
master is responsible for scheduling the jobs' component
tasks on the slaves, monitoring them and re-executing the
failed tasks. The slaves execute the tasks as directed by the
master [5].

The rest of the paper is organised as follows: Section 2
describes usage of a distributed cache. Section 3 describes
usage of a Hierarchical approach. Section 4 describes usage
of Accountable MapReduce in the cloud. Section 5 describes
Data Aware Caching. Section 6 describes usage of a Shared
Disk. The future work has been described in section 7
followed by conclusion and citations.

2. Distributed Cache

File access has always been a problem in real time as far as
performance is concerned. This usual adds a delay in the
MapReduce process especially in real time. Zhang et al
analysed preconditions of dealing with this problem
considering the aspects of requirements, hardware, software,
and network environments in the cloud. Then they described
the design and implementation of a novel distributed layered
cache system built on the top of the Hadoop Distributed File
System which is named HDFS-based Distributed Cache
System (HDCache)[6].

They designed and implemented a distributed cache system
on top of HDFS (Hadoop Distributed File System) in an
attempt to accelerate person-specific data access in large-
scale real-time cloud services. Their novel HDCache system
is based on the following factors, prerequisites and design
considerations:

A. On-the-top Method rather than Built-in Method

They designed a distributed cache which is rather
independent of the HDFS so that the HDFS is not overloaded
to improve performance [6].

B. Network I/O rather than Disk I/O

Cloud computing systems are usually built on the top of low-
cost commercial hardware connected by Gigabit Ethernet. In
practice, the network I/O rate is about 100MB/s that is
approximately equal to the disk I/O rate. On one hand, a real-
time cloud computing system stores large amounts of data, on
the other hand, data access of the system usually appears in
the way of sudden and random bursting, which evidently
slows down the disk scheduling performance resulting in the
read efficiency being no more than 50MB/sec .Consequently,
accessing data over the Ethernet usually is a better choice
than reading them from an HDFS Datanode disk. If the cloud
computing system is deployed on top of the high-speed
networks such as 10-Gigabit Ethernet, InfiniBand and
Myrinet, network I/O obviously has huge advantages
compared to disk I/O [6].

C. Layered Data Accessing Model

There are three data access layers in the system when
building a cache on the top of HDFS. The first layer is in
memory cache in which the data access rate is approximately
equal to the memory unit access rate (ignoring OS memory
swap). The second layer is local disk snapshot and remote in
memory cache with a data access rate about 50~100MB/s.
The bottom layer is HDFS where all data are stored in
DataNodes with the accessing rate influenced by many
factors such as data load, concurrency of threads and network
traffic etc. Applications using distributed cache firstly
retrieve the desired file in DRAM cache, and if missing, the
cache service will contact with another cache service for the
file or load it from a local disk snapshot if existed. If the
procedure still cannot get the desired file, the cache service
requested by the client will load the file from HDFS [6].

Figure 3: Typical Network Topology of Deployment

Paper ID: 0201564 1934

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Maximising MapReduce Process Using a
Hierarchical Approach

Zhiwei Xiao et al found out that Hadoop had limitations in
exploiting data locality and task parallelism for multi-core
platforms. Then they extended Hadoop with a hierarchical
MapReduce scheme. An in-memory cache scheme is also
seamlessly integrated to cache data that is likely to be
accessed in memory. They proposed Azwraith, a hierarchical
MapReduce approach aiming to maximize data locality and
task parallelism of MapReduce applications on Hadoop. They
discovered that there are multiple levels of data locality and
parallelism in typical multicore clusters that could affect
performance [7].

It has been identified that, the open-source implementation of
MapReduce, Hadoop [7], makes use of the JVM runtime to
run the actual MapReduce tasks, which is not the best way to
explore the cache hierarchy and task parallelism existing in
many multi-core based commodity clusters. Hadoop requires
both key and value objects to implement the Hadoop
Writable interface to support serialization and deserialization,
causing extra objects creation and destroy overhead as well
as memory footprint.

There are also some applications that require processing the
same piece of data several times or iteratively to get the final
results. Although Hadoop exploits data locality with a single
iteration of jobs by shifting computation to its data as much
as possible, unfortunately, it does not consider data locality
across multiple processing iterations, and thus requires the
same data being loaded multiple times from the networking
file systems to nodes that process the data. As a result of all
these shortcomings Zhiwei Xiao et al designed Azwraith to
counter them.

Figure 4: Azwraith Architecture

Azwraith, is a hierarchical MapReduce approach aiming to
maximize data locality and task parallelism of MapReduce
applications on Hadoop[4]. In the hierarchical MapReduce
model of Azwraith, each Map or Reduce task assigned to a
single node is treated as a separate MapReduce job and is
further decomposed into a Map and a Reduce task, which are
processed by a MapReduce runtime specially optimized on a
single node. Specifically, Azwraith integrates an efficient
MapReduce runtime for multi-core to Hadoop.

To exploit data locality among nodes at networking level,
Azwraith integrates an in-memory cache system that caches
data in memory that will likely be reused again, to avoid
unnecessary networking and disk traffics. Through the use of
word count, gigasort algorithm and linear regression their
experiments proved that Azwraith, their extension to Hadoop
outperformed Hadoop.

4. Accountable MapReduce in Cloud

Computing

Zhifeng Xiao et al proposed Accountable MapReduce, which
forces each machine to be held responsible for its behavior.
They set up a group of auditors to perform an Accountability
Test (A-test) which will check all working machines and
detect malicious nodes in real time. They tapped into a very
sensitive area which is very much of great importance in
improving the overall performance of MapReduce[8].

They introduced a component known as the Auditor Group
(AG) which carries out Accountability Test to detect
malicious nodes. Normally, as shown in Figure 5, cloud
resource will be divided into multiple slices, each of which is
rented by a customer. A slice is a group of working machines
assigned to a customer. An AG manager is maintained for the
entire cloud, and one AG for each slice that runs MapReduce.
The reason of associating each slice with one AG is to
conserve the privacy and independence of customers.

The AG Manager is a coordinator that conducts AG creation,
management, and disposal. After the AG manager becomes
aware of the customer’s data size, timing, and other
requirements, it will determine the AG size and then create
an AG for the slice. Each AG is internally structured as a
cluster. The head node is the Group Head (GH), and the
member node is the Group Member (GM). The GH picks up
workers as test targets randomly. The master has a protocol
with the GH to provide all information needed for an A-test.
The GH assigns A-test tasks to the available GMs, which are
the actual machines that accomplish the tasks and report their
status.

Figure 5: Audit Group in Cloud Platform

Accountable MapReduce comes in with a twofold form of
benefit. Unauthorized tasks are not given a chance to execute
and this will automatically improve the performance of
MapReduce in the cloud. However, the drawback in this
method is that sometimes false positives can distort
everything. This is also introduced as an extra independent
component which will be added on top of the inbuilt
MapReduce such that the original set up of MapReduce is not
altered as it may create some new problems [8].

Paper ID: 0201564 1935

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Data aware caching for BigData applications
using MapReduce

An observation regarding Hadoop and NoSQL database
applications is that they generate and store a large amount of
intermediate data [1], and this abundant information is
thrown away after the processing finishes. Motivated by this
observation, Yaxiong Zhao et al proposed a data-aware cache
framework for big-data applications, which they called
Dache. In Dache, tasks submit their intermediate results to
the cache manager. A task, before initiating its execution,
queries the cache manager for potential matched processing
results, which could accelerate its execution or even
completely saves the execution. A novel cache description
scheme and a cache request and reply protocols are designed.
They implemented Dache by extending the relevant
components of the Hadoop project [9]. Testbed experiment
results demonstrated that Dache significantly improves the
completion time of MapReduce jobs and saves a significant
chunk of CPU execution time.

Figure 6: High level description of the architecture of Dache

Dache requires only a slight modification in the input format
and task management of the MapReduce framework, and
applications need only slight changes in order to utilize
Dache[9]. They implemented Dache in Hadoop. Testbed
experiments showed that it can eliminate all the duplicate
tasks in incremental MapReduce jobs and doesn't require
substantial changes to the application code hence improving
the overall performance of Hadoop.

Dache identifies the source input from which a cache item is
obtained, and the operations applied on the input. In the
reduce phase, they devised a mechanism to take into
consideration the partition operations applied on the output in
the map phase. They also discovered a method for reducers to
utilize the cached results in the map phase to accelerate their
execution. They implemented Dache in the Hadoop project
by extending the relevant components. Their implementation
follows a non-intrusive approach, so it only requires
minimum changes to the application code.

6. Shared Disk BigData Analytics with Apache

Hadoop

For organizations which don’t need a horizontal, internet
order scalability in their analytics platform, Big Data

analytics can be built on top of a traditional POSIX Cluster
File Systems employing a shared storage model. Anirban
Mukherjee et al in their study compared a widely used
clustered file system: VERITAS Cluster File System (SF-
CFS) with Hadoop Distributed File System (HDFS) using
popular Map-reduce benchmarks like Terasort, DFS-IO and
Gridmix on top of Apache Hadoop[10]. In their experiments,
VxCFS could not only match the performance of HDFS, but
also outperformed in many cases. This way, enterprises can
fulfill their Big Data analytics need with a traditional and
existing shared storage model without migrating to a different
storage model in their data centers. This also includes other
benefits like stability & robustness, a rich set of features and
compatibility with traditional analytics applications.

They gathered a credible reasoning behind the need of a new
non-POSIX storage stack for Big Data analytics and
advocate, based on evaluation and analysis that such a
platform can be built on traditional POSIX based cluster file
systems. They developed a file system connector module for
SF-CFS to make it work inside Apache Hadoop platform as
the backend file system replacing HDFS altogether and also
have taken advantage of SF-CFS’s potential by implementing
the native interfaces from this module. This scheme did not
require any changes in the Map Reduce applications. Just by
setting a few parameters in the configuration of Apache
Hadoop, the whole Big Data analytics platform can be made
up and running very quickly.

The clustered file system connector module they developed
for Apache Hadoop platform has a very simple architecture.
It removes the HDFS functionality from the Hadoop stack
and replaces it with VERITAS Clustered File System. It
introduces SF-CFS to the Hadoop class by implementing the
APIs which are used for communication between
Map/Reduce Framework and the File System. This could be
achieved because the Map-Reduce framework always talks in
terms of a well-defined FileSystem [10] API for each data
access. The FileSystem API is an abstract class which the file
serving technology underneath Hadoop must implement.
Both HDFS and their clustered file system connector module
implement this FileSystem class, as shown in Figure 7.

Figure 7: Architecture of SC-CFS Hadoop Connector

Paper ID: 0201564 1936

7

In
di
pe
to
te
an

R

[1

[2

[3

[4

[5

[6

[7

[8

[9

[1

A

in
cl

se
A
A
E
N
aw
D
aw

7. Conclus

n this paper w
iscovered by
erformance in
o become a
echnological p
n open and av

References

1] Kudakwas
Cases in B
Research i
Vol. 2, Issu

2] https://ww
10/openpd

3] GoogleBig
.html

4] Kudakwas
Dark Side
Internation

5] http://hado
ml

6] Jing Zhan
Distributio
ACM/IEE
Computing

7] Zhiwei Xi
MapReduc
on Parallel

8] Zhifeng X
Computing

9] Yaxiong Z
Data Appl
2013 Proc

10] Anirban M
with Apac

Author Pro

Ku
deg
Zim
IT
dev

nterests are in
loud computin

Dr.
Prin
Un
27
Ad

ecured the B
Andhra Prades
Award by IS
Educationist, a
New Delhi, In
warded by N

Delhi, India
warded by P

ion and Fu

we have mana
several resea

n MapReduce
very excitin

problems incl
vailable area fo

she Zvarevash
Big Data", In
in Computer a
ue 5, May 20

ww.usenix.org/
dfs/Burd.pdf
gTable:http://l

she Zvarevash
of NoSQL D

nal Journal of
oop.apache.org

ng,"A Distrib
on System in R
E 13th Inte
g.
iao, " A Hiera
ce Efficiency
l Architecture
Xiao, “Acco
g", 2011 IEEE
Zhao," Dache:
lications Usin
eedings IEEE

Mukherjee ,"S
he Hadoop" 2

file

udakwashe Z
gree in Inf
mbabwe in 20
final year at

velopment re
n the area of
ng and web se

. A. Vinay
ncipal of JNT

niversity Hyde
years in

dministrative
Best State Te
sh in 2011,B

STE, AP Ch
awarded by

ndia April 200
National & I

March 200
Pentagram R

Internatio

Licens

uture work

aged to combi
arches in solv
e. In-memory
ng application
luding MapRe
or more future

he, " A Survey
ternational Jo
and Communi
14
/legacy/public

labs.google.co

he, "A Random
Databases in B

Science and R
g/docs/r1.2.1/

buted Cache
Real Time Cl
ernational Co

archical Appro
" 2011 Intern

es and Compil
ountable Map
E.
: A Data Awa
ng The MapR

E INFOCOM
Shared Disk
2012 IEEE

Zvarevashe,
formation S
10. He is curr
JNTUH, Indi
esearch fello
f big data, in
ervices.

Babu, Profe
TUH College o
erabad. His w
n Teaching,
as an eminen

eacher Award
Best Compute
hapter in No
National &
09,â€œEmine
International
08, Distingui
Research cent

onal Journa
ISSN

Impac

Volume

sed Under Cre

ine several m
ving the prob

cache is beg
n in solving
educe. We se
e researches.

y of the Securi
ournal of Inno
ication Engin

cations/login/2

om/papers/big

m Walk throu
Big Data Anal
Research (IJSR
/mapred_tutor

for Hadoop
oud Services"
onference on

oach to Maxim
national Conf
ation Techniq
pReduce in

are Caching fo
Reduce Frame

Big Data An

Attained his
ystems at
rently doing M
a. He is a HI
ow. His re
nformation se

fessor in CS
of Engineerin
ork of experie
, Research
nt educationi
d , State Go
er Science T
ov 2009, Em
Inter compen

ent Citizen of
Compendium

ished Acade
tre Private L

al of Scienc
N (Online): 23
ct Factor (201

e 3 Issue 7,
www.ijsr.n

eative Commo

methods
lem of

ginning
many

ee it as

ity Use
ovative
eering,

2011-

gtable

ugh the
lytics",
R).
rial.ht

p File
", 2012
n Grid

mizing
ference
ques

Cloud

or Big-
ework"

nalytics

s BSc
MSU,

M Tech
T staff

esearch
ecurity,

E and
g, JNT
ence is

and
ist. He
ovt. of

Teacher
minent
ndium,

f India,
m New
emician
Limited

Hyd
Ind
PhD
Gui
the
and

ce and Rese
19-7064

12): 3.358

July 2014
net
ons Attribution

derabad, India
ian solidarity

Ds and many
idance. He ha
University in

d HOD of CSE

earch (IJSR

n CC BY

a on Jan 2008
y council, Ne

more PhD S
ad held numbe
ncluding that o
E etc.

R)

 and Jewel of
ew Delhi, Ind
Scholars are w
er of administ
of Director Ad

f India awarde
dia. He guide
working unde
trative position
dmissions, SC

ed by
ed 9
r his
ns in

CDE,

Paper ID: 0201564 1937

