
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A New View on Method-Calls and Contracts to
Facilitate Developers in making their Design

Decisions

Dr. G. Manoj Someswar1, M. Ratna Raju2

1Professor & Research Supervisor, Mewar University, Chittorgarh, Rajasthan, India

2Research Scholar, Mewar University, Chittorgarh, Rajasthan, India

Abstract: Existing concepts are time tested and are used for the very purpose of integrity, reliability and accuracy. A comprehensive
overview of these concepts helps the software developers to take appropriate decisions with a view to procure accurate results with
successful implementation. Even reinventing things often opens a new angle and helps to gain a deeper understanding of the related
topics. Calling a method of a component is a very basic process, but it is not as simple as it seems. Each method must be called by using
the correct parameters and will often return a value or an object reference. There are a lot of possible reasons why a call may cause an
error. Some of these reasons, like an incorrect signature, can be checked by the compiler. Other reasons cannot be checked by the
compiler because it is not possible to specify them in the chosen language. As an instance for the problem in consideration, it is clearly
indicative from the developers point of view that there is the possibility of occurrence of dependencies in the used parameters due to the
reason that there will be two integer parameters and the first parameter will be necessarily greater than the second one. There are other
specific reasons for the occurrence of a possible error during a call which could necessarily be a busy device, an incorrect initialized
object, a reference to a deleted object etc. The best thing a developer can be able to do is to clearly specify the behavior of the object
when the call cannot be finished successfully. The behavior is defined by an exception, so that it is possible to react to this error. This
research paper tries to open a new view on method-calls and contracts to facilitate developers in making their design decisions in the
area of software engineering and design.

Keywords: deterministic call, nondeterministic call, method call, component, state, state machine, pseudo linear contract

1. Introduction

As a matter of fact, as against software life cycle models
from the point of view of the software developers, the
models pertaining to software process explicitly indicate a
sequence of activities, objects, transformations, and events
over a network that includes suitable relevant strategies for
establishing software solutions. Keeping in view of this fact,
the design and development of suitable models can be
utilized to develop more accurate and generalized
descriptions of software development life cycle activities.
The strength and reliability emerges from their usage of a
much required rich notation, syntax, or semantics which are
required for computational processing and to facilitate
developers in making their design decisions using method
calls and contracts.

Software process networks are to be recognized as showing
a comprehensive multiple interconnected and well organized
task chains. These task chains indicate a notional sequence
of actions which are non-linear that facilitate structural
transformation and provide for transformation of available
computational objects mainly the resources into intermediate
or finished products. The concept of Non-linearity and its
subject matter in to emulate that the sequence of activities
may be non-deterministic, iterative, accommodate
multiple/parallel alternatives, and also partially ordered to
accommodate for incremental progress. From the point of
view of a non-linear sequences of primitive actions which
denote atomic units of computing work including task
actions, for instance, in case of a user's selection of a
command or menu entry with the help of a mouse or
keyboard. This concept of task chains and formation of such

associated behavior has been referred by Winograd and
others to these units of cooperative work between people
and computers as "structured discourses of work" while task
chains have become popularized under the name of
"workflow".

Task chains have to be understood thoroughly by the
designers and developers so that it enables them to identify
the characteristic features of prescriptive or descriptive
action sequences.

Idealized plans for the implementation of prescriptive task
chains are based upon the presumption that what type of
actions should be accomplished and in what sequential order
of priority. As an indication, a task chain for the activity of
object-oriented software design might include the following
task actions:

1. Development an informal narrative specification of the

system.
2. Identification of the objects and their attributes.
3. Identification of the operations on the objects.
4. Identification of the interfaces between objects, attributes

or operations.
5. Implementation of the operations.

However to be more precise, this process which includes a
sequence of actions that are designed to provide for multiple
iterations and primitive action invocations which are purely
non-procedural leading in the pathway of incremental
progress towards an object-oriented software design.

Paper ID: 02014266 2264

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

For the purpose of forming a complete production network
or web based configuration, it is necessary that task chains
join or split into other task chains. The outcome of a well-
defined production web is indicative of the "organizational
production system" that changes to a raw computational,
cognitive and also some organizational resources into
assembled, integrated and usable software systems. The very
basis for the development, utilization and maintenance of a
new software system is the production lattice which actually
lays a strong foundation for the development of such a
system. Analytically speaking, the prescriptive task chains
and actions cannot be formally acknowledged to anticipate
all possible circumstances or idiosyncratic foul-ups which
can crop up in the real world of software development.
Hence, in the case of any software production web there is
every possibility that in whatever manner as such will
provide for any way to realize only an approximate or
incomplete description of software development.

In the case of any breakdown or inadequacy, articulation
work provides for a kind of unanticipated task that is clearly
indicative in such circumstances. It is work that represents
an open-ended non-deterministic sequence of actions taken
to restore progress on the disarticulated task chain, or else to
shift the flow of productive work onto some other task
chain. Thus, descriptive task chains are employed to
characterize the observed course of events and situations that
emerge when people try to follow a planned task sequence.

Software process dynamism is often referred to as the notion
of articulation work and articulation work often is an
indicative of software evolution which encompasses
different actions people who utilize and accommodate to the
contingent or anomalous behavior of a software system or
negotiation with others who may be able to affect a system
modification or otherwise bring about a notable change in
the existing circumstances.

2. Problem Definition & Objectives

Software Engineering gives many opportunities to
researchers to identify problem areas which are critical to
the successful implementation of the projects on the client
sites. The scenario described above in which multiple
participants hold multiple views on the software system they
are developing, may be termed “multi-perspective software
development”. Software engineering methods designed to
support such multi-perspective development must be able to
handle the multiplicity of participants, views, development
strategies and notations, in such a way that the existing
method calls and contracts can be implements successfully
by making suitable changes in the process models and derive
probabilistic results.

The research study is being carried out keeping in view of
the above problem area and developing a possible prototype
which fulfills it in the best possible way by making suitable
changes in the existing system models after evolving a
suitable technical strategy and successfully implementing
the components in real life scenarios. An elaborate study of
the existing system paved way for the design and
development of the proposed system in this research paper.

3. Existing System

According to the modes of operability in general there are
two types of method-calls. As a matter of fact, calls that will
determine successfully in both case and method-calls that
can be interrupted because something is going wrong. To
make it easier to distinguish between these types, they will
be named deterministic call and nondeterministic call.

From the point of view of research, it is observed that in
most of the occasions, developers often concentrate on the
deterministic calls and forget to define the behavior of the
nondeterministic ones. Both method types are equally
important for the design process and also for testing the
software which is the basic requirement.

Also, it is necessary to understand that it is important to
accept an exception as a valid result of a call. It is to be
noted that the difference between an exception and a result
of a successful call is that the execution of the program will
follow a different way. An invalid call would be if an error is
not reported by an exception. This often causes a crash of
the whole application and this fact is time tested. It is
therefore imperative to give utmost importance to the above
implication keeping in view of the associated risk factors [1]

From the research point of view, one basic assumption is
that each component has internal states. It has been observed
on several occasions that developers often do not recognize
these states and hence there is no representation of these
states in the program. Each component has at least two
states, just Created and deleted. Depending on the
functionality there may be only these two states or a lot of
other states between them. Sometimes flags or status
variables are used to store state information [2] Even when
they are implemented, they cannot be used for testing, as
there can be a mistake in the code that is used to set the state
information and everything seems to be right although an
error has occurred. That is why the only reliable way of
testing is to monitor the behaviour of the class.

Rationally speaking, the our research work has shown that
before describing the behaviour of a component by defining
a sequence of calls we should take a closer look at method-
calls and define a model for them which is prerequisite
requirement for the successful outcome.

Considering the fact that in the case of a method namely
calling a method will bring about a radical change in the
internal state of a component which can result in a new state
or the component that can stay in the same one. During the
call, the component changes into an intermediate state in
which the component calculates the result of the method
call. However, it is to be made clear from the research point
of view that sometimes becomes necessary to consider this
state but often the component stays in this state for a very
short time and therefore it can be ignored [3] Also, when a
method-call is blocking, this state must be taken into
consideration. By taking a further example into account for
considering this intermediate state is particularly when the
method is solving a concurrency problem. In this case the
method has to be defined asynchronized which means that
only one call of this method can be done as long as the

Paper ID: 02014266 2265

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

execution of the method has not been finished.

From the viewpoint of developers and designers, it is clearly
ascertained that during the execution of a method an error
can obviously occur. Such a condition will definitely make
the component to switch into a state that cannot be directly
reached from the original state. Our research work has
shown that there seems to be a needlessly complicated view
of method calls, but this model allows a simpler test-
framework and it is important to understand this view of
method-calls to work with the test-framework. The test-
framework becomes simpler because this model defines
deterministic state-machines for this nondeterministic
problem of calling methods and gives a broad overview of
the outcome of our research work [4].

Here are some rules for understanding the following
graphics and the more enhanced ones:
• Circle: Equals a state.
• Line with arrow: Equals a transition between two states.

The arrow shows the direction and points at the result state
• Solid line: Equals a normal transition. This transition is

the reason why the method was written. [5]
• Dotted items: Denote internal intermediate states or

transitions that are used by the model. Transitions caused
by events like exceptions must be specified for error
handling in order to make it possible to test the correct
behavior. [6]

• Rectangle: Equals an event, like a method-call or the
occurrence of an exception. It is also seen that an event
can have more than one eject, however, up to now the
only eject is that the transition is executed. [7]

3.1 Deterministic call

In this case, we have considered this model example for the
purpose of studying the existing system to consider the fact
that the component is in the state A before a method is
called. During the call the component is in the intermediate
state A*. After the result has been calculated there is only
one possible state in this example labeled as B. This is a
diagrammatic representation to assess the state of the call [8]

Figure 1: Model of a deterministic call

3.2 Nondeterministic call

It is found that a nondeterministic call is quite equal to a
deterministic call. However the difference is that the
intermediate state A* has two possible transitions into
further states. Keeping this in view, once the result is
calculated, and then the component will switch into state B.
The component will switch into the state C only if there is a
possibility of occurrence of an error. As a matter of fact, a
diagrammatic representation is enough in order to assess the
possible existence of states in the case of a nondeterministic
call [9]

Figure 2: Model of a nondeterministic call

3.3 Sequence of Calls

For the propose of our research study, we have come to the
conclusion that it is very important to describe the usage and
the behavior of components both in order to use and to test
the component. Therefore by thinking of the description of a
component and considering the testability during the design

process makes it easier to design simpler and therefore
better components. If it is easy to test a component, it is
probably easy to use it. Otherwise components that do not
facilitate these tests often include design problems.

The behavior and the allowed usage can be described by a
sequence of method-calls and their results. Some methods

Paper ID: 02014266 2266

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

cannot be called when a certain state has not been reached.
These calls define a possible sequence of method-calls
which is the only way the component can be used.
Sequences of method calls are the first step to define
contracts of components.

3.4 Contracts

As part of the design and implementation of method calls
and contracts from a realistic perspective, it is ascertained
that as and when a component is implemented, there is no
direct way to specify its usage and behaviour. The usage is
written down in the documentation of a component. It is
difficult to write a program that extracts test-cases for the
component from the documentation. It is to be noted that
documents are human readable otherwise. A better means of
giving solution to this problem is to define contracts
between components. These contracts can be written in a
machine readable form and therefore it s possible to
transform them into human readable texts or diagrams [10]

On the other hand, one part of a contract is the way of
calling methods of a component and depending on the
language; exceptions may be thrown when an error occurs. It
is to be noted that the problems cannot be given suitable
solutions using contracts and certain exceptions caused by
certain problems always cannot be solved by contracts in the
fullest perspective. However, a suitable methodology can be
employed using contracts.

An illegal call of a method cannot be prohibited by a correct
signature. Some pre-conditions often need to be fulfilled by
methods before they can be used. After a successful call the
result has to match a post-condition and the state of the
component may have changed by that time.

Contracts are defined by signatures and a possible sequence
of method-calls. Because of the existence of many variants,
it may not be possible to describe a correct sequence. A
good design should prevent complex sequences and limit the
amount of possible variants.

It is necessary to correctly define the start- and the end-state

for each method-call in order to describe the correct
sequence which is actually a recommended approach. In
some cases it is useful to consider the intermediate states.
The description can be defined as set of states combined
with a set of methods and transitions between them [11].

• S set of states
• Ss ⊂ S set of start states
• Se ⊂ S set of end states
• M set of methods
• Ss × M → Se

In this model transitions correspond to method calls.
Classification of contracts into several types can be done by
taking a view at the time line of permissible method-calls.
This will be modeled by using a state-machine.

4. State-machines as sequence-models

Analyses of the several design processes have shown that
state-machines are well-known constructs to control
different processes. They are defined by states and
transitions between these states. A state-machine does not
remember the earlier states but it only knows the actual state
i.e., the state which is under consideration [12]

This behavior is not enough for modeling the allowed
sequences of method calls and there are other limitations, so
that it is necessary to enhance the functionality of state-
machines.

4.1 Limitations of state-machines

Before defining a more enhanced state-machine it is
imperative to understand their limitations. The limitations of
state machines is a possible constraint that needs to be
recognized from the research point of view [13]

A one-way state machine exhibiting the one-way-limitation
is indicated in the figure 3 below:

Figure 3: A one-way state-machine

A study on the existing system has shown that a state-
machine allows only one way of applying the transitions.
Parallel transitions cannot be done in any other way or
manner. It would be always better to specify the correct
sequence of calls but sometimes it is not possible to specify
only one allowed way. Figure 3 shows a sequence of
transitions that result in state Y. Reaching state Y in this
example is only possible going from state A to state B, etc.

Our research has shown that sometimes a state could be
reached when several other states have been reached without
defining an order. Our research study has shown that such
sequences will quickly get too complex to handle only when
State machine permits such an order. In order to avoid this
situation, a new view has been incorporated as a result of our
research work which resulted in the successful
implementation of a one-way state machine which will reach
the final state irrespective of the order whether well defined
or which needs to be defined in order to reach the final state.

Paper ID: 02014266 2267

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 4: State-machine for permutations of calls

4.2 Defining Groups of States

While considering a group of states as a suitable solution to
this problem can be building groups of states. However,
state-machines do not support groups of states because of
introduction of multiple policies making the system more

and more complex. There must be policies for which
transitions are valid within the group and which cannot be
applied. These policies will get less complex if they can be
defined for state-machines as in Figure 4.

Figure 5: State-machine similar to a one- way state-machine

All transitions that result in a new state can be called in this
state again in case of this state machine.

Modeling of components by such state-machines comprise
of methods that can be called at least two times without
resulting in an error. This might not apply for all methods
but a lot of methods show this behavior. In the case of
building up of a component, it might be necessary to store
references of other components by calling a method. This
method can be called several times without causing an error.
An example for a method that does not have such a behavior
could be the opening of a file containing the setup
information. An exception can occur when a method is
called twice and when the file is still opened. Our research

study has shown that a robust implementation is to avoid
such an exception and to make it possible to call the method
more than once.

5. Proposed System

5.1 Enhanced state-machines

The proposed system consists of enhanced state-machines
that allow to test contracts as defined by using a new set of
states. It supports a group of states that are recognized and
suitable to implement successfully. All transitions that are
allowed between these states can be applied and reassigned
to the system many number of times. A method that causes a

Paper ID: 02014266 2268

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

switch to a new state but cannot be called again in this state
can also be called once in these state-machines. Therefore,
this is a new and enhanced way to implement various
method calls and contracts successfully by recognizing and
grouping states.

After a state-machine has been defined, this enhanced
functionality can be applied by grouping states.

Figure 6: An enhanced state-machine

5.2 The categorization of contracts

This Research paper stresses upon the contracts and their
categorization in order to successfully implement them in
the proposed system prototype for the purpose of simplicity
and minimizing the errors in the system. There are various
categories of contracts. For implementing systems that deal
with contracts, it is important to define categories for these
types. Some types do not need additional algorithms but

others need loop-detectors or other algorithms based on
graph-theory.

The following are the different types of contracts which
need improvisation in the existing system and then
incorporate them in the proposed system for the purpose of
research study.

5.3 Linear Contracts

Linear contracts are the simplest type. Each state has only
one transition that ends in another state.

Figure 7: Linear contract

It is very simple to handle such contracts since there is a
clear way of how a component that supports this type of
contracts has to be used.

5.4 Pseudo Linear Contracts

Pseudo Linear Contracts are somewhat more complex than
the linear type of contracts. One or more states have one or
more transitions that end either in the same state or in a state
that has not been visited.

Figure 8: A pseudo linear sequence

A correct perspective has to be established to build a system
that will be able to handle such contracts which would be
able to solve two major critical issues:

• There are different ways of reaching a state.
• How often a transition is called that ends in the same state.

5.5 Looped Contracts

Our research study has shown that it is necessary for
developers to avoid writing contracts that have this behavior
as far as possible but when the situation prompts sometimes,
it becomes necessary for a component to have such a
contract.

Paper ID: 02014266 2269

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 9: A looped sequence

Our Proposed System is designed for these contracts for the
purpose of solving several problems by answering the
following questions and possibilities:

• What are the various ways of reaching a state?
• What is the probability that a transition called several

times ends in the same state.
• What is the procedure to detect loops?
• How to detect all ways to reach a state.
• How to ascertain the shortest way to reach a state.
• How to identify the various ways of reaching a state.
• How often a transition is called that ends in the same state

needs to be known.

6. Analysis and Interpretation

Our proposed model for testing software components uses
pre-conditions to define what is to be done before a
component can be used. Pre-conditions are often defined in a
very formal way resulting in lots of work to define them and
involve a lot of analytical work and logical reasoning for
interpreting the results accurately.

It is always necessary to define the states during the design
of the component itself. The objective is to reduce the
complexity of the design component and make it as simple
and functional as possible which will in turn result in
minimization of errors and create an optimum environment
with increased efficiency and functionality.

This research paper lays emphasis on the functionality and
operability of the various design components and utilizing
the methods calls and contracts from a new viewpoint and
also to establish a purposeful and meaningful relationship
between states and preconditions. Our research has given the
following outcomes as a result of meaningful analysis and
interpretation:

 Methods that need the same pre-conditions are in the same

state.
 The summary of all states that are needed to reach a state

can be interpreted as the pre-conditions of this state.

It is always most appropriate to derive most pre-conditions
by utilizing the states. However, this has not been proven

and evaluating this assumption and developing an algorithm
should be part of further research.

 Our research also focuses on the assumption that the
manner in which the components will be used in
combination with other components. It is to be ascertained
that all these components have contracts that must be
fulfilled. The components are connected by applying
method-calls on each other. The component that applies a
method-call on another component is called caller and this is
prerequisite requirement for the successful establishment of
a connection.

As described in this research paper, there are several types
of method calls, deterministic calls and nondeterministic
calls. Figures 10 and 11 shows the model of combining
components by applying deterministic call as well as for a
non-deterministic call.

This is a matter of great simplicity because by invoking a
deterministic call will always result in an end-state. Image
shows the model of a deterministic call between two
components. Both involved components change into their
end-states.

Figure 10: A call of Deterministic Method

Figure 11: A call of a nondeterministic method

Paper ID: 02014266 2270

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Since there is more than one possible end-state, it becomes
more complex in the case of calling a non deterministic
method. It becomes imperative the two components must
handle all possible exceptions and switch into the
corresponding state as shown above.

The following state machines were developed for the
research purpose for a better and more methodical
understanding which explain both about deterministic and
non deterministic method calls and give a broader
perspective of the research study. These figures also provide
a pathway to software developers to develop suitable
prototypes for industrial and pharmaceutical companies
which can enhance their software engineering requirements
wherein it will lead to advanced productivity and turnover.

Figure 12: Figure showing interconnected components

using method calls

Figure 13: State machine prototype model

Figure 14: Components handling multiple exceptions

Figure 15: State machine prototype for industrial purpose

Figure 16: Prototype of a state machine with suitable

attributes

Figure 17: Prototype of a State machine process model

7. Results

The research paper provides a pathway for the software
developers in successfully implementing the various method
calls and contracts in the assessment of process centered and
process driven software engineering environments that rely
on process models using suitable method calls and contracts
to configure and control their operations in the fullest sense.
The results have been excellent in providing several avenues
for the improvement and enhancement of these different
methods from the existing system and creating a suitable
model for the present system. This research study provides
several opportunities available for the designers and
developers which include:

1) In the first place software developers can think of

software process simulation efforts which seek to
determine or experimentally evaluate the performance of
classic or operational process models using a sample of
alternative parameter configurations or empirically
derived process data and simulation of empirically
derived models of software evolution or evolutionary
processes also offer new avenues for exploration as
shown in the figures above.

2) Also, the developers can view from the point of Web
based applications wherein Web-based software process
models and process engineering environments seek to
provide software development workspaces and project
support capabilities that are tied to adaptive process
models.

3) The research lays emphasis on the software process and
business process reengineering which focus attention to
opportunities that emerge when the tools, techniques, and

Paper ID: 02014266 2271

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

concepts for each disciplined are combined to their
relative advantage. As such, this will provide in turn
giving rise to new techniques for redesigning, situating,
and optimizing software process models for specific
organizational and system development settings.

4) This research paper provides for understanding,
capturing, and operationalizing process models that
characterize the practices and patterns of globally
distributed software development associated with open
source software as well as other emerging software
development processes, such as extreme programming
and Web-based virtual software development enterprises
or workspaces.

8. Conclusion and Future Scope

Considering the fact from the research point of view, it is
concluded that code contracts provide a way to specify
preconditions, post conditions, and object invariants in the
developed code. Also, preconditions are requirements that
must be met when entering a method or property. At the
same time, post conditions describe expectations at the time
the method or property code exits. It is also confirmed that
object invariants describe the expected state for a class that
is in a good state. Our research has also proved that code
contracts include classes for marking your code a static
analyzer for compile-time analysis and a runtime analyzer.
The classes for code contracts can be found in the System.
Diagnostics. Contracts namespace.

The benefits of code contracts include the following:

 Improved testing: Code contracts provide static contract

verification, runtime checking, and documentation
generation.

 Automatic testing tools: For the purpose of establishing
more and more meaningful unit tests, code contracts can
play an important role to provide for more meaningful
units by filtering out those meaningless test arguments
which do not satisfy the required preconditions.

 Static verification: Violations can be checked without
running the program with the help of static checker which
can decide whether there are any contracts. It checks for
implicit contracts such as null dereferences and array
bounds and explicit contracts.

 Reference documentation: The contract on formation has
to be filed along with the documentation generator
augments and existing XML documentation files. There
are also style sheets that can be utilized along with
Sandcastle so that the generated documentation pages
have contract sections.

Technically from the developer point of view, all .NET
Framework languages can immediately take advantage of
contracts and also there is no need to have to write a special
parser or compiler. A Visual Studio add-in lets us specify
the level of code contract analysis to be performed.
Therefore, the analyzers can confirm that the contracts are
well-formed (type checking and name resolution) and can
produce a compiled form of the contracts in Microsoft
intermediate language (MSIL) format. Authoring contracts
in Visual Studio lets us take advantage of the standard
IntelliSense provided by the tool which is a plus point.

The research work has also shown that most methods in the
contract class are conditionally compiled wherein the
compiler emits calls to these methods only when a special
symbol is defined namely CONTRACTS FULL, by using
the #define directive. CONTRACTS FULL lets us write
contracts in the code to be developed without using #ifdef
directives. Our research has also shown that it is possible to
produce different builds some with contracts and some
without contracts.

From the point of view of our research work, all methods
that are called within a contract must be pure and as such
they must not update any preexisting state. A pure method is
allowed to modify objects that have been created after entry
into the pure method.

Assuming that the following code elements are pure, the
code contract tools normally make use of:
 Methods that are marked with the Pure Attribute.
 Types that are marked with the Pure Attribute (the

attribute applies to all the type's methods).
 Property gets accessors.
 Operators (static methods whose names start with "op",

and that have one or two parameters and a non-void return
type).

 An appropriate method whose properly assigned name
starts with "System.String", "System.IO.Path", or
"System.Type".

 "System.Diagnostics.Contracts.Contract",
 Any invoked delegate provided that the delegate type

itself is attributed with the PureAttribute. The delegate
types System.Predicate<T> andSystem.Comparison<T>
are considered pure [3]

Our research has indicated that all members mentioned in a
contract must be at least as visible as the method in which
they appear. For example, a private field cannot be
mentioned in a precondition for a public method and clients
cannot validate such a contract before they call the method.
Anyhow, if the field is marked with the
ContractPublicPropertyNameAttribute, then invariably it is
exempt from these rules as such.

We can express precondition which a state whenever a
method is invoked. By using the Contract.Requires method.
They are basically meant to specify valid parameter values.
All members that are mentioned in preconditions must be as
accessible as the method itself and on the other hand there is
every possibility that the precondition might not be
understood by all callers of a method. It is also ascertained
that the condition must have no side-effects. It is to be noted
that the run-time behavior of failed preconditions is
determined by the runtime analyzer exclusively.

References

[1] Ambriola, V., R. Conradi and A. Fuggetta, Assessing

process-centered software engineering environments,
ACM Trans. Softw. Eng. Methodol. 6, 3, 283-328,
1997.

Paper ID: 02014266 2272

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[2] Balzer, R., Transformational Implementation: An
Example, IEEE Trans. Software Engineering, 7, 1, 3-14,
1981.

[3] Balzer, R., A 15 Year Perspective on Automatic
Programming, IEEE Trans. Software Engineering, 11,
11, 1257-1267, 1985.

[4] Balzer, R., T. Cheatham, and C. Green, Software
Technology in the 1990's: Using a New Paradigm,
Computer, 16, 11, 39-46, 1983.

[5] Basili, V.R. and H.D. Rombach, The TAME Project:
Towards Improvement-Oriented Software

[6] Environments, IEEE Trans. Soft. Engr., 14, 6, 759-773,
1988.

[7] Basili, V. R., and A. J. Turner, Iterative Enhancement:
A Practical Technique for Software Development, IEEE
Trans. Software Engineering, 1, 4, 390-396, 1975.

[8] Batory, D., V. Singhal, J. Thomas, S. Dasari, B. Geraci,
M. Sirkin, The GenVoca model of software-system
generators, IEEE Software, 11(5), 89-94, September
1994.

[9] Bauer, F. L., Programming as an Evolutionary Process,
Proc. 2nd. Intern. Conf. Software Engineering, IEEE
Computer Society, 223-234, January, 1976.

[10] Beck, K. Extreme Programming Explained, Addison-
Wesley, Palo Alto, CA, 1999.

[11] Bendifallah, S., and W. Scacchi, Understanding
Software Maintenance Work, IEEE Trans.Software
Engineering, 13,3, 311-323, 1987.

[12] Bendifallah, S. and W. Scacchi, Work Structures and
Shifts: An Empirical Analysis of Software Specification
Teamwork, Proc. 11th. Intern. Conf. Software
Engineering, IEEE Computer Society, 260-270, 1989.

[13] Biggerstaff, T., and A. Perlis (eds.), Special Issues on
Software Reusability, IEEE Trans. Software
Engineering, 10, 5, 1984.

[14] Boehm, B., Software Engineering, IEEE Trans.
Computer, C-25, 12, 1226-1241, 1976.

Paper ID: 02014266 2273

