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Abstract: Rigid body motion table is a celebrated piece of knowledge and educational cornerstone found in almost all theoretical 
mechanics textbooks. What these tables lack is the complete presentation of all quantities describing the rigid body motion, namely the 
orientation or the angular position of the rigid body. This omission is due to the vector formalism that is used. To correct this 
inconsistency the authors show how the same table should be written using matrix formalism. The authors also show how the fixed table 
helps students to much easier derive frequently used formulas and equations regarding theoretical mechanics and more specifically 
rigid body motion. 
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1. Introduction 
 
The current paper presents the well-known rigid body 
motion table that is found in almost every theoretical 
mechanics textbook. The used vector formalism burdens the 
equation derivation and in most cases becomes the reason 
why in most rigid body motion tables the angular position of 
the rigid body is absent. This table summarizes all quantities 
describing the rigid body linear and rotational motion. There 
are two columns in the table: the first column describes the 
variables of the linear rigid body motion; the second column 
shows the variables of the rotational rigid body motion. The 
table then compares quantities in rows between linear 
motion and rotational motion. 

2. Background 
 
Here we shall not cite theoretical mechanics textbooks as 
such citations could be comprehended as negative 
advertisement for these wonderful books. We try to fill a 
small gap in the puzzle of theoretical mechanics education 
and not to criticize. 
 
Instead, we shall mention that some novel free access online 
stereoscopic 3D simulations for e-learning mechanics [1] 
were created thanks to the table in matrix form. See Table 1 
and Figure 1. 
 

 
Figure 1: Simulation of rigid body motion available free at www.ialms.net.
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3. The Rigid Body Motion Table 
 
The description of the current approach would require a 
concise overview of the basic terms and formalism utilized 
in order to clarify the presentation. When talking about rigid 
body motion, a non-inertial reference frame needs to be 
defined. This reference frame is connected to the body and is 
called the body frame. The rigid body does not move, nor 
rotate in respect to the body frame. Thus the motion of the 
body equals the motion of the body frame in respect to the 
inertial space frame. This motion is linear and rotational 
with 6 degrees of freedom [2]. Table 1 shows the variables, 
describing the two motions (linear and rotational) of the 
rigid body. All variables are compared one by one. Such 
tables are common in theoretical mechanics textbooks, but 
very often they miss fundamental variables and relationships 
such as rotational position (orientation). Table 1 is 
generalized and utilizes the matrix presentation of the state 
variables, describing the rigid body state. 
We shall make a brief overview of a few notations and 
equations known from the linear algebra university course. 
These notations and equations will be used in the current 
paper extensively. Three dimensional vectors are preferably 
presented in matrix form, either as three element row-matrix 
or three element column-matrix, as follows: 

(1.)   zyx bbbb  b


  

Matrices are denoted with bold characters. Transposed 

matrix of matrix R  is denoted with ~R  and the derivative 

in respect to time is expressed with the dot notation R . In 
this paper, the anti-symmetric matrix of a vector will be used 
extensively. 

If vectors a


 and b


are given in matrix form a  and b , then 
their inner product (dot product) is given by: 
 

(2.)  ~abba


 
 

If vector b


is given in matrix form b , then its anti-

symmetric matrix is denoted with *b  and is equal to: 

(3.)   






















0

0

0
**

xy

xz

yz

zyx

bb

bb

bb

bbbb  

Matrix *b  has three degrees of freedom and is isomorphic 
to the 3D vector b . The asterisk notation may be better 
understood as asterisk operator. Thus the inverse asterisk 
operator is trivial: 

(4.)   *
21

*
13

*
32 bbbb   

When vectors are presented in matrix form, the equivalence 
between vector product (cross product) and the 
multiplication with anti-symmetric matrix of a vector is as 
follows: 
 

(5.) 
 

 






















0

0

0
*

xy

xz

yz

zyx

bb

bb

bb

aaaba ab


 

 
The outer product of two vectors, presented in matrix form, 
should also be recalled: 
 
(6.) 
 

  baba ~

































 zyx

z

y

x

zzyzxz

zyyyxy

zxyxxx

bbb

a

a

a

bababa

bababa

bababa

 

Note that both matrix products bb   and 
2*b  yield 

symmetric matrices as follows: 

(7.)  




















2

2

2

zzyzx

zyyyx

zxyxx

bbbbb

bbbbb

bbbbb

bb  

(8.)    

 
 
The latter equation is frequently utilized. Matrix 1  is the 
3x3 identity matrix. 
 
The following operators are essential for the definition of the 
rigid body rotational motion. If matrix R  is rotation matrix 
[3] then the following two operators are defined: 
 
(9.)  XRX   - Forward frame transform 
operator 

(10.)  XXR ~  - Inverse frame transform 
operator 
 
These operators are defined using matrix multiplication. The 
argument X  or X  is a 3-dimensional vector presented in 
row-matrix form. Prime-variables are defined in the body 
reference frame while non-prime variables are defined in the 
space reference frame. Another operator and its inverse is 
the well-known similarity transformation operator or matrix 
rotation operator [4]: 

(11.)  ARAR ~  - similarity transformation 
operator or matrix rotation operator 

(12.)  ARAR ~  - inverse similarity transformation 
operator or inverse matrix rotation operator 
 
The variables, describing the rigid body linear and rotational 
motion systematized in a table follow: 
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Table 1: Rigid body dynamic parameters for linear and rotational motion
 

Parameter Linear motion Angular (rotational) motion 
Position Linear position is presented by 

the radius-vector of the center of 

mass cr . All linear variables are 

given with respect to the space 
reference frame, while the origin 
of the body reference frame 
coincides with the center of mass 

OOc r . 

Angular position or orientation is expressed by the rotation matrix 
R  or any of its reduction derivatives, such as Euler angles, rotation 
quaternion, etc. 
 
The rotation matrix connects the space and the body reference 

frames by the forward frame transform operator XRX   and 

the reverse frame transform operator XXR ~
. 

Velocity  Linear velocity vector of the 

center of mass cc rv  .  
Angular velocity vector ω , where  RRω ~*   [3] and 

 *
21

*
13

*
32 ωωωω  . In the body reference frame the 

angular velocity is 
~ωRω  . 

Acceleration Linear acceleration vector of the 

center of mass cc ra  . 
Angular acceleration vector ωε   or 

RRRRε  ~~*    [3] and  *
21

*
13

*
32 εεεε  . In the body 

reference frame the angular acceleration is 
~εRε  . 

Inertia Total mass of the rigid body 

 

 

 

V

V

dxdydzzyx

dVm

,,

 r

 

Note:  zyxr . 

Moment of inertia tensor in the body reference frame 

 

   
































VV

V
zzyzxz

yzyyxy

xzxyxx

zdydxdzyxVd

dmr

III

III

III

,,
2*2*

2

 rrr

rr1I

 

2*r  is a symmetric matrix and its integral is also a symmetric 

matrix. Hence, tensor I  is a symmetric matrix and has only six 
degrees of freedom. 
In the space reference frame, the moment of inertia tensor is 

RIRI 
















 ~

zzyzxz

yzyyxy

xzxyxx

III

III

III

. Here RIRI  ~  and 

~RIRI   are similarity transformations. Note that, while I  is 
constant, I  depends on the current body orientation. It is also 
obvious that 

 

 








V

V

dV

Vd

rr

rRrRRrRRIRI





2*

*~*~~

 

Matrix I  is also symmetric, because rotation preserves symmetry 
and anti-symmetry. 
The moment of inertia tensor I  is a tensor of second rank that 
relates vector L  to vector ω  (see below). I  is equivalent to a 3x3 
matrix. 

Momentum Linear momentum of the center of 

mass cc mvp  . 

Angular momentum. Its differential form is 

          dmdmdmdd
2***** ωrωrrrvrrprrL   

and its integral form is  
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    ωIrrωωrrLL  
VVV

dVdmd 
2*2*

. 

In the body reference frame the angular momentum is 

IωRIRωRωIRLRL  ~~~~
. 

Force Force 

cccext mm pvaF   . 

The sum of all external forces, 
applied to the rigid body, changes 
the linear momentum of the 
center of mass in respect to time 
as follows: 

 extc Fp  or 





t

extc dt
0

Fp . 

Torque (moment of force) 
*rFτ  . 

The sum of all external torques, applied to the rigid body, changes 
the angular momentum in respect to time as follows: 

  *
extext rFτL  or 





t

ext

t

ext dtdt
0

*

0

rFτL . 

In the body reference frame the torque is 
~τRτ  . 

Kinetic 
energy 

Kinetic energy of the linear 

motion 
2

2
c

K
mv

E  . 

Kinetic energy of the rotational motion 

        

 
2222

1

2

1

2

22~~
~2*

~**
2





I
dV

dV
vdm

E

V

VV

rot
Krot









nInωIω
rωωr

rωrωr
r

 

Note: vector 

ω

n   and ~nInI . 

 
4. Benefits 
  
The student benefits from the rigid body motion table in 
matrix form in a number of situations. Here, some of these 
situations are disclosed in order to unveil the erroneous 
approach of presenting the rigid body motion table using 
only vector notation. 
 
Example 1. Particle Kinematics in Inertial and Non-inertial 
Reference Frames 
 
We shall examine the equations describing particle 
kinematics using matrix formalism instead of vector 
formalism. Let O  be the inertial and not moving reference 

frame and O  be a non-inertial, moving and rotating 
reference frame (Figure 2.). All quantities in regard to the 
inertial reference frame are non-primed, while all quantities 
in regard to the non-inertial reference frame are primed. 

 
Figure 2: Transformation between frames O and O’. 

 

We want to describe how the kinematic quantities of a 
particle in regard to the inertial reference frame depend on 
the kinematic quantities of this particle in regard to the non-
inertial reference frame. I.e. we want to make the relation 
between non-primed and primed quantities. This relation is 
based on the kinematic quantities of the non-inertial 
reference frame in regard to the inertial reference frame. The 

non-inertial reference frame has position and orientation ( Cr

, R ) in regard to the inertial reference frame. The latter 
quantities may be called linear and angular positions of the 
non-inertial reference frame. For vector r  and its 
derivatives we have that: 
 

(13.)  Rrrrrr  CC 1  

(14.)  RrRvvrrr   CC 1  

(15.)      
 RrRvRaa

RrRrRvRvarrr








2

1

C

CC
 

 
The derivative and double derivative of the rotation matrix 
are found in [3]. Using (14.) and (15.) we obtain: 
(16.)
 

~*
1 RωrRvvRrRvvrrrv  CCC



 

(17.) 
~*~*~*~*

~*

2

2

RεrωRωrRωvRaa

RrRωvRaara





C

C

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The terms in (17.) are the different accelerations that appear 
when a particle is moving in a non-inertial reference frame. 
Let the student recognize how these accelerations are called. 
 
Example 2. Free Rigid Body Motion. 
 
The free rigid body motion will be observed as an example. 
Notably, the free rigid body motion is comprehended with 
difficulty by students. Here we show that the most 
difficulties come from the inadequate presentation of 
variables using only vector mathematical notation. The 
difficulties are easily overcome using Table 1. variables in 
matrix form. 
The first invariant of free rigid body motion is the angular 
momentum vector L . The student can easily find the 
relation between the angular momentum vector and the 
angular velocity vector ω  using Table 1.: 
 
(18.) ωIL   and IωL   

(19.) 1 LIω  and 1 ILω  
 
If the body reference frame is chosen along the principal 
axis of inertia, the moment of inertia tensor transforms to a 
diagonal matrix 
 

(20.) const

I

I

I

zz

yy

xx

























00

00

00

I  

 
Its inverse is also diagonal and has the simple form of 
(21.)
 

const

I

I

I

I

I

I

zz

yy

xx

zz

yy

xx






















































100

010

001

00

00

00

1

1

1

1I

 
The second invariant in free rigid body motion is the kinetic 
energy of rotational motion KrotE . This conservation 

parameter leads to the following constraint of movement 
(Table 1.): 
 
(22.)
 

 
constEKrot 







2222

~~~~~~~ ωIωωRIωRωRIRωRωIω  

 
Analogously, the above equation can be transformed in 
respect to the angular momentum: 

 

(23.) 

 

const

EKrot












22

222
~1~1

~~11~11~

LILLLI

LIILILIILIωIω

 

 
Evolving these two equations by the vector components and 
the principal moments of inertia gives: 
 
(24.)

 
constEIII Krotzzzyyyxxx  2222~ ωIω  

 
(25.)

 
constEILILIL Krotzzzyyyxxx   2121212~1LIL  

 
These are the equations of two ellipsoids which are static 
(invariant) in the body reference frame. These two ellipsoids 
depend solely on the inertial properties of the rigid body and 
will be denoted with ω  and L  respectively. If the 

rotational kinetic energy is to stay constant, both vectors ω  
and L  are constrained to point on the surface of the two 
ellipsoids defined by equations (24.) and (25.) respectively. 
If either of vectors ω  or L  points outside of its constraint 
ellipsoid, KrotE  will increase. Analogously, if either vector 

points inside its constraint ellipsoid, KrotE  will decrease. 

By implementing the L  constraint in the KrotE  constraint, 

one observes that: 
 

(26.) 

constEconst

E

Krot

Krot






2

2222
~

~~~1~

ωL

ωLLωIωLIωIω
 

 

In other words, KrotEL 2cos~  ωL , but 

 constL const
L

EKrot 
2

cos . The projection 

vector Lω  of vector ω  in the direction of vector L  is 

always the same (Figure 3.): 

 

LLL nnLL
L

LωL
ω

L

E

LL

L Krot2
cos

coscos
22

~

 

 
 

 

Here, vector n
L

nL 
L

 is the normal vector of an 

invariable plane  . 
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Figure 3: Relation between angular velocity and angular 

momentum in free rigid body motion. 
 
5. Future Scope 
 
Authors intend to conduct experiments with students in 
General physics, Analytical mechanics and Theoretical 
mechanics at different universities. The experiments would 
prove the effectiveness of the proposed systematic 
formalization for learning the rigid body dynamics. The 
understanding of the mathematical formalism and the 
physical and real phenomena by students using this table is 
expected to improve. This supposition should be proven by 
the planned experimental tests. 
 
6. Conclusions 
 
Understanding rigid body motion and manipulating the 
variables describing it may be harmed severely if only 
vector mathematical formalism is used. By applying matrix 
formalism the student is liberated from such burdens and is 
allowed to easily and clearly formalize and describe the 
studied phenomena. Solving problems becomes a systematic 
and pleasant pursuit. Furthermore, physical laws become 
consistently formalized, and formulas: easily derived from 
one another. 
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