
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Different text Data Compression
Techniques

Apoorv Vikram Singh1, Garima Singh2

1Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India

2 Department of Computer Science and Engineering, Gautam Buddha University, Greater Noida, Uttar Pradesh, India

Abstract: Data Compression refers to the process of reducing the data size and removing the excessive information. The main objective
of data compression is to reduce the amount of redundant information in the stored or communicated data. Data compression is quite
useful as it helps us to reduce the resources usage such as data storage space or transmission capacity. It finds its application in the area
of file storage and distributed system because in distributed system we need to send data from and to all the systems. Data compression
techniques are mainly used for speed and performance efficiency along with maintaining the cost of transmission. There are number of
different data compression methodologies, which are used to compress different data formats like text, video, audio, image files. Data
compression techniques can be broadly classified into two major categories, “lossy” and “lossless” data compression techniques. In this
paper, reviews of different basic lossless data compression methods are considered and a conclusion is drawn on the basis of these
methods.

Keywords: Data Compression, Lossless data compression, Lossy data compression, encoding, coding

1. Introduction

Data compression is a way to reduce the data size, remove
excessive information and minimize storage cost by
eliminating redundancies that happen in most files. Data
compression is a common requirement for most of the
computerized application. We find the use of data
compression in the area of file storage and distributed
systems. It also finds its application in network processing
techniques in order to save energy because it reduces the
amount of data in order to reduce data transmitted and/or
decreases transfer time because the size of the data is
reduced. Data compression is used in multimedia field, text
documents and database tables as well. The most important
criteria of classification is whether the compression
algorithm removes some part of data which cannot be
recovered during decompression. On the basis of this
criterion, the data compression techniques are divided into
two major categories, “lossy” data compression techniques
and “lossless” data compression techniques.

2. Data Compression Techniques

Lossless: Lossless data compression algorithms are used to
reduce the amount of source information to be transmitted in

such a way that when compression information is
decompressed, there is no loss of information. Lossless
compression is possible because most real-world data have
statistical redundancy and these algorithms exploit these
statistical redundancies to represent data more concisely
without losing information.

Lossy: Lossy data compression is contrasted with lossless
data compression. Lossy data compression algorithms do not
produce an exact copy of the information after
decompression as was present before compression. In these
schemes, some loss of information is acceptable. Lossy
Compression reduce the file size by eliminating some
redundant data that won’t be recognized by humans after
decoding. Applications of Lossy Data Compression
techniques:
 Lossy image compression can be used in digital cameras,

to increase storage capacities with minimal degradation of
picture quality.

 Similarly, DVDs use the Lossy MPEG-2 Video codec for
video compression.

 In Lossy audio compression, methods of psychoacoustics
are used to remove non-audible (or less audible)
components of the signal [3].

Tree representation of compression methods

Paper ID: 020141298 1999

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Lossless Data Compression Techniques

There are several types of data compression techniques apart
from the three mentioned in the figure. Some of them are:

3.1 Run Length Encoding or

RepetitiveSequence Suppression:

Run-length encoding is a very simple data compression
technique whose basic principle is to count the number of
consecutive data items and then use that count for
compression. The main idea behind this approach is this: If
any data item ‘d’ occurs ‘k’ times in an input stream, then

instead of writing this data item k times we can replace it by
‘kd’.

Example-
Input Stream
: AAAAAAABBBBCCCCCCCAAAAAADDDDD

Compressed Stream: 7A4B7C6A5D

RLE is mainly used to compress runs of same data byte.
This method is used in the case when there is a lot of
repetition of data items. Thus, RLE is often used to
compress a bitmap image, especially the low bit one

Input Rotations Transformation Sorting All Rows in Alphabetical Order Taking Last Column Output Last Column

 ^BANANA| ANANA|^B ANANA|^B

 |^BANANA ANA|^BAN ANA|^BAN

 A|^BANAN A|^BANAN A|^BANAN

^BANANA| NA|^BANA BANANA|^ BANANA|^ BNN^AA|A
 AN NANA|^BA NANA|^BA

 NANA|^BA NA|^BANA NA|^BANA

 ANANA|^B ^BANANA| ^BANANA|

 BANANA|^ |^BANANA |^BANANA

3.2 Burrows Wheeler Transform or Block Sorting
Compression

Burrows Wheeler transform works in Block mode while
others mostly work in streaming mode[2]. This algorithm is
classified as transformation algorithm because it rearranges
a character string into runs of similar characters. Now, these
strings of similar characters can be used as an input stream
for other algorithms like run-length encoding or move-to-
front transform for achieving better compression ratios.

Example-
InputStream: AAAAAAABBBBCCCCCCCAAAAAADDDDD

Output Stream: 7A4B7C6A5D

The transform is done by sorting all rotations of the text in
lexicographic order, then taking the last column.[6]. Since
the BWT operates on data in memory, you may encounter
files too big to process in one fell swoop. In these cases, the
file must be split up and processed a block at a time [5]. One
of the important feature of BWT is that, thistransformation is
reversible because when a character string is transformed by
BWT, the value of the character does not changes, it only
permutes the order of characters.

3.3 Move-to-front Transform

Move-to-front Transform is another basic techniquefor data
compression but the irony is that, it does not compress data,
rather it helps to reduce redundancy sometimes. The main
idea is that each symbol in the data is replaced by its index
in the “stack of recently used symbols” thus, providing the
symbol a smaller output number.

Example: Input Stream: banana

Output Stream: 1,1,13,1,1,1,0,0

Iteration Sequence List
Bananaaa 1 (abcdefghijklmnopqrstuvwxyz)
Bananaaa 1,1 (bacdefghijklmnopqrstuvwxyz)
Bananaaa 1,1,13 (abcdefghijklmnopqrstuvwxyz)
Bananaaa 1,1,13,1 (nabcdefghijklmopqrstuvwxyz)
Bananaaa 1,1,13,1,1 (anbcdefghijklmopqrstuvwxyz)
Bananaaa 1,1,13,1,1,1 (nabcdefghijklmopqrstuvwxyz)
Bananaaa 1,1,13,1,1,1,0 (anbcdefghijklmopqrstuvwxyz)
Bananaaa 1,1,13,1,1,1,0, (anbcdefghijklmopqrstuvwxyz)

This is how input streams are transformed into output stream
using Move-to-front Transformation. This technique is
intended to be used as optimization for other algorithm likes
Burrows-wheeler transform.3.4 LZW (Lempel‐Ziv Welch)
compression

LZWis one of the most popular method of data
compression. The main steps for this technique are given
below:-
 Firstly it will read the file and given a code to each

character.
 If the same characters are found in a file then it will not

assign the new code and then use the existing code from
a dictionary.

 The process is continuous until the characters in a file are
null.

3.5 Shannon Fano Coding

Shannon Fano Coding technique is used to encode data or
messages depending upon their probability of occurrence.
This technique involves following steps:
 For a given list of symbols, develop a probability table.
 Sorting the table according to the probability and placing

the most probable element at the top of the list.
 The table is then divided into two parts, such that the sum

of probabilities both the parts are as close as possible.
 The left half of the list is assigned ‘0’ and the right half is

Paper ID: 020141298 2000

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

assigned ‘1’.
 Repeat the steps 3 and 4 for each of the two halves then

further divide the groups and adding bits to the codes and
stop the process when each symbol has a corresponding
leaf on the tree.

Example:
Symbol A B C D E

Frequency 15 7 6 6 5

Probabilities 0.3846 0.1795 0.1538 0.1538 0.1282

After going through all the steps mentioned above we get:

Symbol A B C D E

Code 00 01 10 110 111

On calculating the average number of bits, we get it to be
around 2.28 bits.

3.6 Huffman Coding

A Huffman Coding is more sophisticated and efficient
lossless data compression technique. In Huffman Coding the
characters in a data file are converted to binary code. And in
this technique the most common characters in the file have
the shortest binary codes, and the least common have the
longest binary code [7].
1. Initialization: Put the elements in a list sorted according to
their frequency counts.
2. Repeat the following steps until the sorted list has only
one node left:

a) From the list pick two elements with the lowest
frequency counts. Form a Huffman sub tree that has
these two nodes as child nodes and create a parent
node.

b) Assign the sum of the children’s frequency to the
parent node and now considering the parent node as
one of the nodes of the list, again pick the lowest two
frequency counts and form a Huffman sub tree.

3. In third step we do labelling the edges from each parent to
its left child with the digit 0 and the edge to right child
with 1. The code word for each source letter is the
sequence of labels along the path from root to leaf node
representing the letter.

Example: Using the same frequency as Shannon Fano
above:

Symbol A B C D E

Frequency 15 7 6 6 5

Probabilities 0.3846 0.1795 0.1538 0.1538 0.1282

After going through all the steps mentioned above, we get:

Symbol A B C D E
Code 0 100 101 110 111

On calculating the average number of bits, we get it to be
around 2.23 bits.

3.7 Arithmetic Coding Technique

Arithmetic coding is the most powerful coding technique.
This method is different from other compression techniques
as it does not replace each bit with a codeword as other
methods instead it replaces a stream of input data with a

floating number as output.
a) In the first step, we calculate the frequency count of

different symbols.
b) In second step we encode the string by dividing up the

interval [0, 1] and allocate each letter an interval whose
size depends on how often it comes in the string.

c) In third step we consider the next letter, so now we
subdivide the interval of that letter in the same way. We
carry on through the message….And, continuing in this
way, we obtain the required interval.

A message is represented by a half-open interval [a, b)
where a and b are real numbers between 0 and 1. Initially,
the interval is [0, 1). When the message becomes longer, the
length of the interval shorts and the number of bits needed to
represent the interval increases.[4]

4. Measuring Compression Performances

Performance measure is use to find which technique is good
according to some criteria. The performance of the
compression algorithm can be measured on the basis of
different criteria depending upon the nature of the
application. The most important thing we should keep in
mind while measuring performance is space efficiency.
Time efficiency is also an important factor. Since the
compression behavior depends on the redundancy of
symbols in the source file, it is difficult to measure
performance of compression algorithm in general. The
performance of data compression depends on the type of
data and structure of input source. The compression
behavior depends on the category of the compression
algorithm: lossy or lossless [1]. Following are some
measurements use to calculate the performances of lossless
algorithms.
 Compression Ratio: Compression Ratio is the ratio

between the size of the file after compression and the size
of the file before compression.

 Compression Ratio = Size after compression/size before
compression

 Compression Factor: Compression Factor is the inverse
of compression ratio. It is the ratio between the size of the
file before compression and size of the file after
compression.

 Compression Factor = Size before compression/size after
compression

5. Conclusion

In this paper, we have talked about the need of data
compressions and the situations in which lossy and lossless
data compressions are useful. Several algorithms used for
lossless compression are described in brief and various
conclusions are drawn. Compression techniques like
BWT(Burrows Wheeler Transform) and MFT(Move-to-
front Transform) are the algorithms which does not
compress data, they just transform the input stream and these
transformed input stream act as input for better compression
techniques. Run Length Encoding is a good compression
technique but it is effective only in the case when there is a
consecutive repetition of symbols or data. Thus, when such
repetitions are not present, then this compression does not

Paper ID: 020141298 2001

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

work effectively. Huffman coding is a better compression
technique than Shannon Fano coding but Arithmetic Coding
is the most effective compression technique among all the
above mentioned compression techniques. Compression
speed of Huffman and Shannon Fano coding is faster than
Arithmetic Coding but the compression ratio of Arithmetic
Coding is far better than the other two. And furthermore
arithmetic encoding reduces channel bandwidth and
transmission time.

Compression Ratio of any technique can further be
improved by applying two techniques on the same data or
message. For instance, we can firstly apply BWT on any
data and then we can apply any of the compression
techniques like RLE or Huffman Coding. This type of
combination improves the compression ratio. Future work
can be done on implementing the compression schemes so
that the searching and compression is faster.

References

[1] “Data Compression Methodologies for Lossless Data and

Comparison between Algorithms”, International Journal
of Engineering Science and Innovative Technology, Vol
2, March 2013.

[2] I Made Agus Dwi Suarjaya, “A New Algorithm for Data
Compression Optimization”, International Journal of
Advanced Computer Science and Applications, VOl 3,
2012.

[3] A Survey on Different Compression Techniques and Bit
Reduction Algorithm for Compression of Text/Lossless
Data”, International Journal of Advanced Research in
Computer Science and Software Engineering, Vol 3,
March 2013

[4] “A Survey on the different text data compression
techniques”, International Journal of Advanced Research
in Computer Science and Technology, Vol 2,Feb 2013.

[5] M. 1996. Data compression with Burrows-Wheeler
Transform. Dr. Dobb's Journal.

[6] Ken Huffman. Profile: David A. Huffman, Scientific
American, September 1991, pp. 54–58.

[7] Mark Daniel Ward, “Exploring Data Compression via
Binary Trees1,” International Journal of Advanced
Computer Science and Applications (IJACSA), Vol. 3,
No.8, 2012.

[8] Blelloch, E., 2002. Introduction to Data Compression,
Computer Science Department, Carnegie Mellon
University.

Author Profile

Apoorv Vikram Singh is currently enrolled in 4thyear
of his B.Tech programme (2011-2015) from Motilal
Nehru National Institute of Technology(MNNIT). He
is an ace programmer and has developed many
android applications. In 2013, he received the title of

“Mr. Avishkar” in the Technical Festival organised by his college.
Besides programming, he has interests in playing football and
listening to music.

Garima Singh is presently enrolled in the 4thyearof
her Integrated M.Tech programme (2011-2016) in
Computer Science Engineering from Gautam Buddha
University. She has already written papers in 3rd year

but this one is her first to be published. She has interests in web
development and has developed a website for her college fest.
Besides this she loves to read novels, painting and listening to
music.

Paper ID: 020141298 2002

