
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Framework for Implementing Realistic Custom
Network Topology in Mininet

Veena S1, Chandan Pal2, Ram P. Rustagi3, K. N. B. Murthy4

1,2,3,4 Department of Master of Computer Applications, PES Institute of Technology,

 100 ft. Ring Road, BSK III Stage, Bangalore, India

Abstract: Software Defined Networking (SDN) is an emerging technology which enables the separation of control plane and the data
plane in the networking infrastructure. Communication between the SDN controller and the network elements can be achieved using
the Openflow switching protocol. Using Openflow the controller can create/modify the entries in the flow tables of switches which in
turn can define the working of underlying networks. Mininet provides a simple and useful network test-bed for the development of
Openflow applications and experimental network infrastructure. The default version of Mininet allows creation of few pre-defined
topologies such as single, linear, tree etc. To create a custom topology, lot of programming effort is required in Mininet software. The
goal of the proposed work is to develop a new framework for the creation of custom topology very easily without any programming. The
new framework also enables the users to create separate IP subnets, the networks with different link parameters such as Bandwidth,
Latency, Packet loss etc. Thus researchers can test their ideas and protocols using this new test bed. People working on Data Center
Technology research can also make use of this framework. Experimental implementation shows that the modification made to the
default version of Mininet does not affect the performance noticeably.

Keywords: Controller, Data Center Technology, Link Parameters, Mininet, Openflow, Software Defined Networks, Virtualization.

1. Introduction

Nowadays computer networks are in constant evolution. The
next generation networks must be scalable, programmable,
flexible and be adaptable to innovative ideas. Researchers
continue to work on providing innovative solutions or
modifications to the current network infrastructure. But such
experiments cannot be practically conducted on existing
operational networks as these may interrupt the operational
traffic on networks. Thus, there is a need to have customized
test-beds for the experimentation and testing of new
innovations and new protocols, which can be solved by the
virtual network infrastructure.

Virtualization is an act of creating a virtual version of
something. It could be hardware virtualization, platform
virtualization, server virtualization or network virtualization.
Researcher’s new ideas and protocols cannot be tested on
real networks as it may affect the working of the operational
network. Virtual network infrastructure would be the answer
in such situations. We can create such an experimental test-
bed using Mininet Emulator. In the proposed work efforts
are made to enhance such a virtual network test-bed, to help
the researchers for their experimentation and students to
understand the working of computer networks.

To address virtualization, agility, mobility and manageability
of today’s networks Software Defined Networks (SDN)
[2],[10],[19] is gaining importance. SDN enables
programmability and configurability of the underlying
networks by decoupling the control plane and the data plane
of the network [1],[17]. The control plane requires an SDN
controller which makes policy decisions and dictates the
switches about the action to be taken by updating the flow
tables of the switches. The switching elements do the
forwarding job as per the entries in the flow table
(instructions by the controller). This forwarding mechanism
is called the data plane. The controller can be implemented

as internal or an external software entity [3], and the data
plane is implemented in the switch for the forwarding of data
packets. This approach helps in quick testing and
implementation of new ideas increases the flexibility and
agility, facilitates higher rate of innovation, and reduces
complexity as well as the cost of switching elements.

Communication between an SDN controller and the switches
is carried out by a switching protocol, called Openflow[14].
In Traditional switches/routers both the control plane and the
data plane are embedded in the same device. This leads to a
situation where in introducing modifications to the existing
algorithms/implementation is practically impossible as these
are proprietary protocols and the networking topology
becomes non-scalable. SDN allows the network
administrator to have easier control over the whole network
from a central location. The forwarding intelligence of the
switch/router can be moved to a central Openflow controller.
Each openflow switch maintains a flow table containing
flow entries which is programmable. Programming the data
plane enables us to add or remove, modify the flow entries
from the flow tables [7]. Whenever a completely new packet
is received by the switch which it has not seen so far, the
switch forwards this packet to the central controller for the
guidance on action to be taken. The decision about when,
where and how to forward a data packet is done by the
central controller.

Most modern Ethernet switches and routers typically use
Ternary Content-Addressable Memory (TCAMs) for flow-
tables to provide packet forwarding at line-rate and
implement functionalities such as firewalls, NAT, QoS etc.,
along with collection of statistics. But this implementation is
vendor dependent. Even though the way in which the data
stored in the flow-table is different, there exists some
common set of functions that run in many switches. The
Openflow protocol is designed to capture these common set
of functionalities. It provides an open protocol to program

Paper ID: 020141279 1316

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the flow-table in different network elements i.e. switches and
routers. A network administrator can partition traffic into
production and research networks. By writing new rules the
researchers can control their own flows without disturbing
the operational traffic. In this way, researchers can try out
new routing protocols, other different ideas on security
models, new addressing schemes in the existing operational
networks. The production traffic is isolated and processed in
the same way it is happening today without any disturbance.
The data-path of an openflow switch consists of a flow-table,
and an action associated with each flow entry [7][9]. The set
of actions supported by an openflow switch is extensible.

To develop an Openflow based applications, a small virtual
network of openflow switches is very much handy for testing
and debugging purposes. Mininet emulator [8] is developed
to meet this demand. One can create virtual openflow
network in desktop/laptop through Mininet emulator. Using
Mininet, openflow applications could be developed in an
easy and inexpensive manner. Mininet uses Linux processes
in network namespaces on a simple desktop for the creation
of scalable, virtual, Software Defined Networks. Mininet
supports research, development, learning, prototyping,
testing, debugging, and any other tasks that could benefit
from having a complete experimental network on a
laptop/Desktop [6]. One can interact with the network using
CLIs (API). Network designs created using Mininet could be
customized and easily ported to real hardware switches
which supports openflow. Mininet could be run on different
platforms and different hardware devices with various
capabilities like laptops, servers, Virtual Machines, Linux
boxes or even in the cloud. The default version of Mininet
supports some simple predefined network topologies (a
network topology is the arrangement of nodes e.g. hosts,
switches etc. and links in a computer network). These pre-
defined topologies are i) a single topology (Figure 1),
consisting of one switch and ‘n’ number of hosts, ii) linear
topology (Figure 2), consisting of ‘n’ number of switches,
each connected with a single host, and iii) tree topology
(Figure 3), that connects switches and hosts in a hierarchical
way. One can specify the depth of the tree and fan out at
switch in the tree hierarchy for the tree topology. In the tree
topology, all switches have same fan out value.

Figure 1: Single Topology

Figure 2: Linear Topology

Figure 3: Tree Topology

These pre-defined topologies helps one to understand the
basic operation of Mininet with openflow, but does not
mimic real life networks which follow a custom designed
topology specific to that network requirements. If a user
needs to create his/her own custom topology, Mininet
provides programming support for the same. However, to
create custom topologies, one has to write programs by
modifying the existing Mininet code which may be a tedious
job for a general user. In the proposed work, efforts are
made towards creating a user friendly framework in Mininet
which supports the creation of user defined topology as per
his/her requirements without writing any programming code.
Users can specify the required topology in a simple ascii text
which can also include different link parameters for each of
the link in the topology either in a configuration file or
interactively at run time. If the topology under consideration
is very big, then it is suggested to specify it through the
configuration file, for smaller topologies, either option could
be used. This enhancement to the existing Mininet test-bed
helps the researchers in creating the required topologies
which may be helpful in their work, in a very easy manner.
The new framework enables very easy creation of fat-tree
topology which is extensively used in Data Center networks.
In a fat-tree the tree link becomes fatter i.e., the link
bandwidth gets increases, as it goes higher the level in the
tree.

As we know, in a computer network, all the hosts connected
to a single LAN(Local Area Network) belongs to the same
broadcast domain by having the same network number. Here
one host can directly communicate to another host in the
same network without the help of an intermediary device
router. In real life networks in general, it may be required to
group the hosts in the network based on some criteria into
separate logical groups. Data packets communicating among
hosts in one group will not be seen by hosts belonging to
another group even though hosts of the other group may be
connected under the same switch. The default

Paper ID: 020141279 1317

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

implementation of Mininet puts all the hosts into a single
LAN having a single broadcast domain with the IP network
address ‘10.x.x.x/8’. In the proposed work efforts are made
to overcome this limitation by creating the networks with
different broadcast domains. Users can specify the details of
different IP network addresses and also the link details like
bandwidth, packet loss, delay etc. in a configuration file and
create a number of IP networks as per his/her requirements.
If IP network address is not specified in the configuration
file, the default address ’10.x.x.x/8’ is taken for all the hosts.

2. Related Work

Currently, network virtualization is the center of research
interest because of its ability of dynamic programming,
energy saving and low cost. In [9], authors have analyzed
and compared the results of four projects based on
virtualization concept. Mainly they focus on validating the
openflow solution for an on demand virtual network
architecture for which Mininet emulator is used. Nikhil
Handigol and et al.[5] use an approach called container
based emulation where an environment of virtual hosts,
switches and links were created which combines the best
features of software simulators and hardware test-beds. They
tried to replicate the results of 16 published networking
papers using Mininet and found satisfactory results.

In general, research on networking systems normally uses
platforms like simulators, test-beds and emulators. Network
simulators try to model the real world networks for the study
purpose. One can analyze the outcomes of experiments by
changing the features of the models. These are relatively
cheaper but can not perfectly model all the details of the
network [16]. Some example simulators are NS2, NS3,
OPNET and OMNeT++.

OPNET [15] is the most popular commercial network
simulator used in industry for networking research and
development. Its GUI interface is very powerful and has
several programming constructs. Users can create networks
easily using this as it is supported by good documentation. It
is a commercial product, so maintenance is also very good.
NS2 [11] is the most popular open source network simulator.
It is an object oriented, discrete event simulator targeted at
networking research. It uses C++ and OTcl for
programming. It allows anybody to work on it, and
contribute for its development. NS3 [12] is also an open
source, discrete event network simulator targeted for
research and educational use. It is developed after gaining
experience with NS2. It includes all the successful and
attractive features of NS2 with some additions. It is
considered as a new simulator and not backward compatible
with NS2. OMNeT++ [13] is also an open source, discrete
event network simulator having component based
architecture. This is mainly used for experimentation with
communication networks. All these network simulators can
be used to study the behavior of the network by changing
several parameters in the model. But the results obtained
need to be carefully observed and analyzed using a series of
offline test experiments. These simulators cannot be used in
SDN research as they do not support SDN architecture and
openflow protocol.

Two important test-beds used in networking research are
GENI (Global Environment for Network Innovation) and
Planet-lab. GENI [4] is a virtual lab created by Mobility first
Project of NSF. It is used for exploring future internets. One
can create scalable, heterogeneous, interactive global
networks, do innovations, study and understand their
interactions with society. It provides collaborative and
exploratory environment for researchers to test their ideas
and protocols on wide area networks. Planet-lab [18] is an
open platform for developing, deploying and accessing
planetary scale services. It is also a global research network
that supports the development of new network services. It
uses an implementation mechanism of container based
virtualization in the Linux kernel to isolate slices. Currently
it consists of 1000+ nodes at 500+ sites which are globally
dispersed. Many industry and academia research labs are
part of this project.

GENI and Planet-labs are well designed test-beds which
work on real network infrastructure. However, to use these
test beds, a researcher needs to be a part of these working
groups. Getting membership for these test-beds may involve
a lengthy process and at times cumbersome for people with a
small research environment. Another option available for
researchers to test their ideas is using the emulators.
Emulators are used to simulate an existing or planned
network. By using emulators one can assess the performance
of networks, analyze and predict the impact of changes. In
an emulator the end systems attached to a network will
behave as if they are attached to a real network. Here there
would not be any significant difference between the real
devices and virtual devices. Real networks may introduce
delays in communication, transmission errors during
operation. Network may drop the packets. Primary goal of a
network emulator is to create an environment which models
the real networks, whereby users can connect their devices,
applications, services and evaluate the performance and
functionality in real world network scenarios. Users gather
the results obtained by emulation and use these results
directly for decision making purpose.

NS3 can also be used as a limited functionality emulator
[12]. NS3 simulator gets enhanced into an emulator by
integrating the test-bed and virtual machine environments. It
provides two kinds of Net devices. Emu Net device allows
NS3 simulations to send data to real network devices. The
tap Net device allows a real host to participate in an NS3
simulation as if it were one of the simulated nodes. Thus the
test-bed containing simulated nodes and real devices will
give a better performance analysis for testing networking
protocols and new ideas. Both type of devices can
communicate to one another as if they belong to same
category. Netem [10] is another network emulator which
provides network emulation functionality for testing
protocols in Wide Area Networks. People working on WAN
technology can make use of this emulator. Here we can
emulate the WAN by varying delay, packet loss, changing
the order of packets, sending duplicate packets etc. to
replicate the real time situations. These emulators are
designed for analyzing and understanding the working of
existing networks and are based on the current network
architecture. For the study of SDNs we require an emulator

Paper ID: 020141279 1318

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

which supports openflow and notion of control plane and
data plane. So Mininet emulator has been considered for
study in this work as it supports Openflow. This enhanced
framework is mainly helpful for the research community
pursuing their work in the area of Software Defined
networks.

Mininet [8] is a network emulator which creates a network
of virtual hosts, switches, controllers and links. Mininet
hosts run on standard Linux software and the switches
support the openflow protocol which is very attractive and
handy for SDN research. Openflow is the most prominent
SDN component supported by several vendors. In [1] the
Openflow controller is used to design a mobile cloud
management system. Such an Openflow, SDN network can
be created by Mininet very easily. It is python based and the
code developed on Mininet can be moved to real world
networks with minimal changes. In existing Mininet, to
create a custom topology other than the pre-defined ones,
one needs to have python programming skills, which could
be a humongous task especially for creating large custom
network topology. The proposed work makes the
functionality of creating custom topology user friendly
without the need for writing any programming code All the
required details of the network connectivity and
characteristics are specified in a simple configuration file
(described in next section). The prosed framework enhances
Mininet in the following ways.

2.1 Creation of custom topology

In the proposed work, Users can create custom topologies of
their choice by running some commands. The required
topology can be specified in a very simple manner in a
configuration file in a human readable form and can be
understood intuitively. All the links between different
switches and the links from switches to hosts and also
optionally link parameters can be specified as configuration
data and this file is passed as parameter at command line
when invoking Mininet (sudo mn). Thus, the framework
facilitates easy creation of any custom topology of user’s
interest.

2.2 Creation of different Broadcast Domains

The framework allows creation of separate IP networks by
specifying the preferred IP network prefixes via the
configuration file itself. Here, one also specifies the hosts
belonging to different networks in a very simple manner. At
the time of topology creation the hosts will take the specified
IP network address from the configuration file, instead of the
default IP address ‘10.x.x.x/8’. This approach provides
creation of multiple broadcast domains in a simple way.

2.3 Creation of custom Topology with different Link

parameters

The framework further allows a user to specify the different
link parameters such as link bandwidth, delay, queue size
and packet loss. These values can be specified for each of
the links in the configuration file of the custom topology. At
the time of topology creation the link details are taken from

the configuration file and network is created corresponding
to these specified values. Using this feature, realistic
topologies as used in Data Centers like fat-trees can be
created in a very simple manner.

The above three enhancements helps the researchers to
develop, test and debug their innovative ideas and protocols.
As Mininet is having openflow support, the topologies
created using Mininet can be used directly for the study of
Software Defined Networks. As the topology of user’s
interest can be created so easily, it can be adapted for the
study of Data Center Technologies.

3. Experiments, Results and Discussions

In the proposed framework, any topology of interest to the
user can be created resembling the real network. The
framework is so implemented so as not to affect the
performance of Mininet by making these enhancements.

Mininet, by default, creates topologies with IP network
address from the network ‘10.x.x.x/8’. In the proposed
framework one configuration file is added to the existing
Mininet. Essentially, the configuration file contains the
connectivity details between the switches and the hosts. An
example of configuration file for the topology of Figure 5 is
provided in Figure 4. Here switch-switch connectivity
follows the syntax ‘Si-Sj-…-S’k, and switch-host
connectivity follow the general syntax Si-hi[-N]. Optionally
for each of the links the user can specify the parameters like
bandwidth, delay, loss etc. These two syntaxes are separated
by double semicolon. The former specifies that switch Si is
connected to Sj through Sk. The latter specifies switch Si is
connected to host hi and this host belongs to network number
N. If N is not specified, then the host belongs to the default
network ‘10.x.x.x/8’. Comments corresponds to the line
starts with ‘#’ character.

Figure 4: Configuration for Simple Custom Topology

In this topology there are 4 switches, 8 hosts and one SDN
controller. Switch s1 and s3 has 2 hosts each attached to
them, s2 has 3 hosts attached to it and 1 host is connected to
s4. Here one can observe that the fan out at each switch is
different which can’t be specified in default topology
creation in the existing Mininet. To create such a topology in
original Mininet, complex python code need to be written
where each link need to be specified in programming
constructs. In the proposed framework user can specify the
links in a simple human readable text-file as in Figure 4.

Paper ID: 020141279 1319

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 5: Simple Custom Topology

As the network number is not specified in the configuration
file, the IP address of the hosts will belong to the default IP
network address ’10.x.x.x/8’.If the user would like to have
IP addresses belonging to specific network, then that can be
achieved by adding the required network address in the
configuration file as in Figure 6. The resultant topology
looks as in Figure 7.

Figure 6: Configuration for Custom Topology with Single

IP Network Address

Here all hosts in the resultant topology belong to the user
specified network number ‘192.168.10.x/24’.

Figure 7: Custom Topology with Single IP Network

Address
Newly created topology can be verified using the ‘net’
command of Mininet. We can also verify the IP addresses of
each host using the regular linux network commands
e.g.‘ifconfig’.

To create multiple IP networks in a topology under
consideration, different network addresses can be mentioned
in the configuration file. An example of such a configuration
file is given in Figure 8, and the corresponding topology
diagram is in Figure 9. In this topology there are four
networks with different number of hosts. Here h1,h7 and h8
belongs to N1, h2, h5 and h10 belongs to N2, h3 and h9 belongs
to N3, h4 and h6 belongs to N4. If the network is not specified
in the configuration file then the IP address for the host is
taken from the default IP network address.

Figure 8: Configuration for Custom Topology with Multiple

IP Network Addresses

Paper ID: 020141279 1320

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 9: Custom Topology with Multiple IP Network

Addresses

Normally in real networks different links can have different
parameters. An example of such a configuration file for the

topology diagram in Figure 11 is as shown in Figure 10.
Thus user can create the topology of his/her choice easily by
specifying one configuration file. If the link parameters are
not specified in the configuration file then the default values
will be taken.

Figure 10: Configuration for Custom Topology with

Different Link Parameters

Figure 11: Custom Topology with Different Link Parameters

The host belonging to one network is reachable from any
other host within the same group. This can be verified using
the ‘ping’ command. If the host belongs to different group
then the packet need to be forwarded through the network
element working as L3 switch designated by controller. In
future, this is planned to be handled by enhancing the
controller functionality.

In the current framework, care should be taken not to create
loops in the network while creating the configuration file.
The framework allows for creation of loops and does not
make a check. If topology contains the loops, then unless the
controller implements spanning tree algorithm, any packet
sent in the network may cause network flooding and
broadcast storm and thus prevent one host from
communicating with the other hosts.

Paper ID: 020141279 1321

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Performance Study

After adding the proposed framework into the original
Mininet the time taken for the creation of topology in
original Mininet as well as in the enhanced Mininet was
compared. The experiments were repeated on two different
test setups; a) running the Mininet installed on the native
machine, and b) running Mininet under VirtualBox. Studies
were conducted by varying the number of switches created
and the number of hosts created in the topology. The results
obtained are given in the Table I.

Table I: Creation Time for Custom Topologies
Sl.
No

No. of Switches (No. of Hosts)

Avg Time taken in seconds
Existing
Mininet

Enhanced
Mininet

1 Sl(5) 0.45 0.41

2 Sl(5)S2(10) 1.09 1.19

3 Sl(5)S2(10)S3(15) 2.39 2.53

4 Sl(5)S2(10)S3(15) S4(20) 3.9 4.18

5 Sl(5)S2(10)S3(15)S4(20) S5(25) 6.11 6.72

The graphical depictions for the results of Table I is shown
in Figure.12.

Figure 12: Creation of Custom Topology

The experiments were repeated by creating different network
domains in the same topology. Again the number of switches
created and the number of hosts created is varied and time
taken to create the topology is analyzed. The results obtained
are given in Table II

Table 2: Creation Time for Multiple Broadcast Domains

Sl.
No

No. of Switches (No. of Hosts)

Avg Time taken in seconds

Existing
Mininet

Enhanced
Mininet

1 Sl(5) 0.48 0.338
2 Sl(5)S2(10) 1.1 1.19
3 Sl(5)S2(10)S3(15) 2.43 2.55
4 Sl(5)S2(10)S3(15)S4(20) 3.9 4.19
5 Sl(5)S2(10)S3(15)S4(20)S5(25) 6.14 6.7
The graphical depiction for the results of Table II is shown
in Figure 13.

Figure 13: Creation of Different Broadcast Domains

The results show that the performance (time taken) by the
original Mininet and the Enhanced Mininet supporting
creation of different topologies is comparable. As the
number of switches and the number of hosts increase there is
a slight increase (less than 10%) in the time taken by the
Enhanced Mininet, but still this increase is negligible when
compared to the ease at which the custom topology can be
created. This framework is very much useful for the
researchers to create the topologies of their interest to test
their ideas and protocols.

5. Conclusion and Future Work

Mininet emulator is a handy tool for networking researchers
to emulate real operational network and to test their
innovative ideas and new protocols. As it is openflow
enabled, it is very much suitable for SDN research. Existing
Mininet is enhanced to create topologies which model the
real time network topologies by specifying different depth
and fan-out, creating different broadcast domains, specifying
different link parameters etc. in a user friendly manner. The
topology can be specified either through the command line
or through the configuration file. The experimental results
show that the time taken for the creation of topology of
user’s choice practically remains unaffected by this
additional feature. Users working on data center research can
also create different topologies like fat-trees for their
experiments.

In future, one can work on implementing spanning tree
algorithm in SDN controller to handle loops in the custom
topology and to forward the packets between different
networks. Similarly, other data center technologies such as
TRILL can be implemented in controller and Mininet can be
upgraded accordingly.

References

[1] Roberto Bifulco, Roberto Canonico, Marcus Brunner,

Peer Hasselmeyer, Faisal Mir, “ A Practical Experience
in Designing an Openflow Controller”, European
Workshop on Software Defined Networking, 2012.

Paper ID: 020141279 1322

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[2] Kostas Choumas, Nikos Makris, Max Ott, “Exploiting
Openflow Resources towards a Content-Centric LAN”,
Second European Workshop on Software Defined
Networks, 2013.

[3] P.Fonseca, R. Bennesby, E. Mota and A, Passito, “A
replication component for resilient openflow-based
networking”, NOMS, 2012.

[4] GENI – Global Environment for Network Innovation
Available: http://www.geni.net.

[5] Nikhil Handigol, Brandon Heller, Vimalkumar
Jeyakumar, Bob Lantz and Nick McKeown, “
Reproducible Network Experiments Using Container-
Based emulation”, CoNEXT, December, 2012.

[6] Bob Lantz, Brandon Heller and Nick McKeown “A
Network in a Laptop: Rapid Prototyping for Software-
Defined Networks”, Hotnets, October 2010.

[7] Nick Mckeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Peterson, Scott
Shenker, Jonathan Turner, ‘OpenFlow: Enabling
Innovation in Campus Networks’, ACM SIGCOMM
Computer Communication Review, Volume 38, Number
2, April 2008.

[8] Mininet Available:
http://www.openflow.org/wk/index.php/OpenFlow_Tut
orial http://mininet.org/overview/

[9] Msahil M, Pujolle G, Serhrenchni A, Fadlallah A,
Guenane F, “Openflow and on demand Networks”,
Third international conference on “Network of the
Future” Nov, 2012.

[10] Netem – Network Emulator Available:
http://www.linuxfoundation.org/collaborate/workgroups
/networking/netem

[11] NS2 Available : http://www.isi.edu/nsnam/ns/ NS3
Available : http://www.nsnam.org/

[12] OMNeT++ Available:http://www.omnetpp.org/
Openflow Protocol
http://www.openflow.org/wp/learnmore/

[13] OPNET Modeller http://www.opnet.com/
[14] Jilani Pan, Raj Jain, “A survey of Network Simulation

tools – Current status and Future Development”, project
report, Nov, 2008.

[15] Peter Peresini, Maciej Kuzniar and Dejan Kostic,
“Openflow needs you! A call for a Discussion about a
Cleaner Openflow API”, Second European Workshop
on Software Defined Networks, 2013.

[16] Planet Lab Available: https://www.planet-
lab.org/node/263

[17] Software Defined Networks
https://www.opennetworking.org/sdn-resources/sdn-
definition

Author Profile

Mrs. Veena S. holds M.C.A. degree from MCE,
Hassan, University of Mysore and M. Tech. Degree
from AAIDU Allahabad. She is currently pursuing her
Ph.D. under VTU in the area of Software Defined

Networks. Mrs. Veena has 18 years of teaching experience in
various institutions and taught post-graduate, under-graduate and
Diploma students in different areas. She has completed her
Instructor Training for CCNA Exploration (now Routing and
Switching) Modules 1 through 4 from Cisco Networking Academy
and training students for the CCNA Routing and Switching course.

She has also been an invited speaker in Network Hands-On
workshops as well as imparting hands-on training on IPv6
networking. Currently she is working as Associate Professor at
PESIT, Bangalore, India.

Dr. Ram P Rustagi, a senior IEEE member, is
working as Professor, Info Sc & Engg Dept, PESIT
and teaching Undergraduates, Post Graduates as well
as guiding few Research scholars. Prior to joining

PESIT, he was Vice President at Kirusa Software Pvt Ltd,
India/USA. As VP, he developed applications in Cellular VAS
areas, He also managed Deployment and Operations Support for
Kirusa's customers in India and APAC region. Besides academic
activity, he is working on few research projects as per grants
received from Pluribus Networks, USA, Kirusa Software,
Bangalore, India. . He is also serving as a member of board of
directors with M/s Altima Technologies Inc, USA. Academic
background: Ph.D from IIT Delhi, India, 1998 and M.Tech from
Indian Institute of Science, Bangalore, India, 1981.

Dr. K. N. Balasubramanya Murthy is currently the
Vice-Chancellor of PES University, Bangalore. Dr.
Murthy has served PES Institute of Technology
(PESIT), Bangalore as the Principal & Director from

2005 to 2014 and has over 30 years of experience in Teaching,
Training, research, industry and Administration. He holds a
Bachelors in Electrical power Engineering from University of
Mysore (1980), Masters in Electrical Engineering from Indian
Institute of Science, Bangalore (1986) and Ph.D. in Computer
Science and Engineering from Indian Institute of Technology -
Madras, Chennai (1996). He was invited to New Mexico State
University as a research specialist in Parallel Computing during the
year 1998-99. He served Malnad College of Engineering, Hassan as
a faculty in Electrical Engineering and East West Institute of
Technology, Bangalore as its Founder Principal. Dr. Murthy has
supervised 4 research scholars for Ph.D. degree and authored over
90 research papers in reputed journals and conferences. He served
as a member of the Academic Senate and Executive Council as well
as several academic committees of Visvesvaraya Technological
University (VTU) - Belgaum of Karnataka. He was a Board
member of BITES under the chairmanship of Prof.R.Natarajan for a
period of three years during 2008-11. He is currently serving as a
member of a committee constituted by Karnataka Knowledge
Council (KKC) for recommending mechanisms to enhance
employability of Engineering graduates in the state of Karnataka
under chairmanship of Prof.G.Padmanabhan of IISc.

Paper ID: 020141279 1323

