
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Prioritizing the Test Cases of Web Services by
APFD Metric

Manali Gupta1, Shweta Rathour2

1, 2ITS Engineering College, Greater Noida, India

Abstract: Regression Testing is a major component of most major testing systems but has only begun to be applied to Web services. A
number of different approaches have been studied to maximize the value of the accrued test suite: minimization, selection and
prioritization. Test suite minimization seeks to eliminate redundant test cases in order to reduce the number of tests to run. Regression
test selection optimizes the regression testing process by selecting a subset of all tests, while still maintaining some level of confidence
about the system performing no worse than the unmodified system. Test case prioritization seeks to order test cases in such a way that
early fault detection is maximized.

Keywords: Regression Testing, Test case prioritization, Test case selection, APFD metric

1. Introduction

Web services have enabled business workflows to be
extended beyond the boundaries of companies and
organizations. Since the business world often involves very
rapid change to keep up with current market conditions, the
business processes inevitably need frequent adjustment, along
with their supporting Web services. Every time the system is
modified, we must ensure that the modification does not have
an adverse affect on any unmodified areas, or regions, of code
(the modification does not introduce new problems into the
code).Typically, this is done by running the test cases
previously used to test the system prior to modification again.

This processing of “retesting” is called regression testing and
its goal is to determine whether or not the system has been
made worse by the modification. Reducing the number of
tests be rerun is called regression test selection. An ideal
regression test selection technique for the verification of Web
service systems would have the following properties: 1) safe,
2) interoperable, 3) compos able, 4) decentralized, 5) end-to-
end, and 6) automated. The testing and analysis of web
services have posed new foundational and practical
challenges, such as the non- observability problem , the
extensive presence of non-executable artifacts within and
among web services, safeguards against malicious messages
from external parties, ultra-late binding and cross-
organizational issues. Many web services (or services for
short) use the Web Services Description Language (WSDL)
(W3C) to specify their functional interfaces and message
parameters. They also use XML documents to represent the
messages.

2. Web Services

Web services refer to self-contained web applications that are
loosely coupled, distributed, capable of performing business
activities, and possessing the ability to engage other web
applications in order to complete higher-order business
transactions, all programmatically accessible through
standard internet protocols, such as HTTP (Hypertext
Transfer Protocol), JMS (Java Messaging Service), SMTP
(Simple Mail Transfer Protocol), etc [1]. More specifically,
Web services are Web applications built using a stack of

emerging standards that form service-oriented application
architecture (SOA), an architectural style whose goal is to
achieve loose coupling among interacting software
components through the use of simple, well defined
interfaces. Extensible Markup Language (XML) provides the
basis for most of the standards that Web services are based
on. XML is a standard that has been developed by the World
Wide Web Consortium (W3C) [2]. XML is a text-based
meta-language for describing data which is extensible and
therefore used to define additional markup languages. SOAP
is designed to be a lightweight protocol for information
interchange among disparate systems in a distributed
environment. The actual format consists of an envelope which
define the contents of the messages and how to process those
contents. Web Service Definition Language (WSDL) [3]
provides a mechanism for describing Web services in a
standard way. The description provides an interface for using
the Web services, in terms of available operations, their
names, parameters and return types. Figure 1 describes the
web service architecture. The description binds a service,
termed abstract endpoints in the specification, to concrete
endpoints, which is a description of the service defined
abstractly then bound to a concrete network protocol and
message format. Universal Description, Discovery and
Integration (UDDI) [4] specification provides a means to
locate and use Web Services programmatically. Service
providers publish high level descriptions of their Web
services into a UDDI repository, with which their services
can be looked up and used. This is shown in figure 1.

Figure 1: Web Service Architecture

Paper ID: 0201412751 2139

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Regression Testing

Regression testing is an important and expensive activity that
is undertaken every time a program is modified to ensure that
the modifications do not introduce new bugs into previously
validated code. An important problem is the selection of a
relevant subset of test cases from the initial test suite that
would minimize both the regression testing time and effort
without sacrificing the thoroughness of regression testing.
Regression testing is performed between two different
versions of software in order to provide confidence that the
newly introduced features of the System Under Test (SUT)
do not interfere with the existing features.

Definition 1: Test Suite Minimization Problem

Given: A test suite, T, a set of test requirements
{r1,……..,rn}, that must be satisfied to provide the desired
‘adequate’ testing of the program, and subsets of T,
T1,………,Tn, one associated with each of the ri s such that
any one of the test cases tj belonging to Ti can be used to
achieve requirement ri.

Problem: Find a representative set, T’, of test cases from T
that satisfies all ri s.

Definition 2. Test Case Selection Problem

Given: The program, P, the modified version of P, P’, and a
test suite, T.

Problem: Find a subset of T, T’, with which to test P’.

Definition 3. Test Case Prioritization Problem

Given: a test suite, T, the set of permutations of T, PT, and a
function from PT to real numbers,

f : PT R.

Problem: to find T’ ∈ PT such that (T’’)(T’’ ∈ PT)(T’’ ≠
T’)[f(T’) ≥ f(T’’)].

These three techniques will be collectively referred to as
‘regression testing techniques’.

4. Regression Test Selection: Problem

Let P denote Version X that has been tested using test set T
against specification S. Let P’ be generated by modifying P.
The behavior of P’ must conform to specification S’.
Specifications S and S’ could be the same and P’ is the result
of modifying P to remove faults. S’ could also be different
from S in that S’ contains all features in S and a few more, or
that one of the features in S has been redefined in S’. The
regression testing problem is to find a test set Tr on which P’
is to be tested to ensure that code that implements
functionality carried over from P works correctly.

Most safe RTS techniques rely on information about the
program’s source code. The technique which has been
adopted by the approach presented in this paper involves
generating control-flow graphs from the involved code [5].

They are graphs in which each node represents a code entity
and each edge represents the flow of control from one node to
another. An additional structure needed by this particular
algorithm is a mapping of the test cases to the control-flow
graphs. The techniques involving control-flow graphs follow
three basic steps, which will be covered in more detail: 1) It
constructs a control-flow graph for P’; 2) Identifies dangerous
edges by comparing the control-flow graph of P with the
control-flow graph of P’; 3) Based on coverage information
and the set of dangerous edges it selects from the test suite
those tests that need to be rerun. A control-flow graph is a
graph in which each node represents a code entity and each
edge represents the flow of control from one node to another.
For example, suppose there is a method with psuedocode
presented in Figure 2, the control-flow graph for this method
would look like the one in figure 3.

1 order(item) -
2 if (item exists) -
3 if (item is in stock) -
4 order item;
5 return successful;
} else
6 return error(“ERROR: 104: item not in stock”);
}
} else
7 return error(“ERROR: 109: item does not exist”);
} }

Figure 2: Psuedocode for an ordering service

The process of identifying dangerous edges by comparing the
control-flow graphs of P and P’ is one of the important parts
of the process. Dangerous edges correspond to program
entities that may behave differently under a single test case
due to differences between P and P’. The regression test
selection algorithm compares the two control-flow graphs by
traversing the two control-flow graphs simultaneously
looking for differences between them. If the two nodes are
different in terms of their children or their values, the
algorithm adds the node to the dangerous edge list. The
algorithm is recursive and stops either when it finds a
difference in the control-flow graph, when it reaches a node it
has already compared, or when it reaches an exit node
without finding a difference.

Figure 3: Control Flow Graph for pseudocode in Figure 2

For example, suppose that service A is represented by the
psuedocode and the control-flow graph presented above

Paper ID: 0201412751 2140

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

which was presented in Figure 2 and 3 respectively. Suppose
after some time, the developers of service A modify the
psuedocode to what is shown in figure 4. The differences are
shown in italics.

1 order(item) -
2 if (item exists) -
3 if (item is in stock) -
4 if (customer has money) -
5 order item;
6 return successful;
} else
7 return ERROR: 103: customer lacks funds
}
} else -
8 return error(“ERROR: 104: item not in stock”);
}
} else
9 return error(“ERROR: 110: item does not exist”);
} }

Figure 4: Altered psuedocode for ordering service from Fig

2.

The regression test selection approach must build the control-
flow graph for this new version of the order service and that
is shown with the original one in Figure 5.

Figure 5: Control Flow Graph for pseudocode in Figure 4

The algorithm which determines the set of dangerous edges
compares the two control-flow graphs by performing a dual-
traversal as described. The result of the dual traversal marks
the following edges dangerous: 1-2, 2-3, 2-7, and, 3-4. It
selects these edges because the node corresponding to four is
structurally different than the original and because the node
corresponding to seven is textually different. The coverage
information can easily be thought of as a table and the process
is simply a table lookup using that coverage information. The
technique guarantees that any test case which does not cover
a dangerous edge, or entity, will behave exactly the same in
both P and P’, and thus can never expose a new fault in P’.
Since it is guaranteed to only remove those tests which can
never expose new faults in P’, this technique is safe because it
minimizes the number of test cases while maintaining the
same level of confidence provided by selecting all test cases.
For example, suppose that the original service A was
augmented with test cases and coverage information which
are both shown in figure 6. Note that since the code shown is
psuedocode, the test cases will follow suit.

Test Cases
Inputs corresponding to three test cases
1. Order item which does not exist
2. Order item which does exist but is not in stock
3. Order item which does exist and is in stock

Expected outputs corresponding to the three test cases
1. return error
2. return error
3. return successful

Coverage Information
1. 1-2-7
2. 1-2-3-6
3. 1-2-3-4-5

Figure 6: Three test cases and their coverage information for

service A

The coverage table is used as lookup table and tests numbered
one and three are selected for retesting. These tests are
selected because the dangerous edge list prefixes these two
tests completely. Control-flow graphs are ideal for use in
Web service environments for a number of reasons. Firstly,
control-flow graphs can be generated from programs written
in any language, or extracted from designs at any granularity.
Secondly, since control-flow graphs are special cases of finite
state machines, they can be composed into global finite state
machines [6]. These two characteristics of control-flow
graphs are essential for supporting both the interoperability
and composition of web services.

5. Testing Web Services

Testing web services is more challenging compared to
traditional systems for two primary reasons; the complex
nature of web services and the limitations that occur due to
the nature of SOA. It has been argued [7] that the distributed
nature of web services based on multiple protocols such as
UDDI and SOAP, together with the limited system
information provided with WSDL specifications, makes web
service testing challenging.

6. Test Case Prioritization

The purpose of test case prioritization is to increase the
likelihood that if the test cases are used for regression testing
in the given order, they will more closely meet some
objective than they would if they were executed in some other
order. Test cases can be prioritized in terms of the number of
statements, basic blocks, or methods they executed on a
previous version of the software. A second way in which
prioritization techniques can be distinguished involves the use
of "feedback". A third way in which prioritization techniques
can be distinguished involves their use of information about
code modifications. Most prioritization techniques proposed
to date focus on increasing the rate of fault detection of a
prioritized test suite. To measure rate of fault detection we
use a metric, APFD (Average Percentage Faults Detected),
introduced for this purpose in [8], which measures the
weighted average of the percentage of faults detected over the
life of a test suite. APFD values range from 0 to 100; higher
numbers imply faster (better) fault detection rates. More

Paper ID: 0201412751 2141

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

formally, let T be a test suite containing n test cases, and let F
be a set of m faults revealed by T. Let TFi be the first test case
in ordering T’ of T that reveals fault i.

7. Average Percentage Faults Detected (APFD)

Metric

To quantify the goal of increasing a subset of the test suite's
rate of fault detection, i use a metric called APFD developed
by Elbaum et al. [9,10] that measures the average rate of fault
detection per percentage of test suite execution. The APFD is
calculated by taking the weighted average of the number of
faults detected during the run of the test suite. APFD can be
calculated using a notation:

Let T  The test suite under evaluation
m  the number of faults contained in the program under test
P
n The total number of test cases
TFi  The position of the first test in T that exposes fault i.
APFD = 1 _ TF1 + TF2+ + TFm + 1
nm 2n

So as the formula for APFD shows that calculating APFD is
only possible when prior knowledge of faults is available.
The APFD metric relies on two assumptions: (1) all faults
have equal costs. (2) all test cases have equal costs. These
assumptions are manifested in the fact that the metric plots
the percentage of faults detected against the percentage of the
test suite run. In practice, however, there are cases in which
these assumptions do not hold: cases in which faults vary in
severity and test cases vary in cost. In such cases, the APFD
metric can provide unsatisfactory results, necessitating a new
approach to test case prioritization that is “cognizant" of these
varying test costs and fault severities.

8. Limitations of the APFD Metric

Consider the following four scenarios of cases in which the
assumptions of equal test costs and fault severities are not
met.

Table 1: Example Test Suite and Faults Exposed
Test Fault

 1 2 3 4 5 6 7 8 9 10

A X X

B X X

C X X X X X X X

D X

E X X X

Example 1. Under the APFD metric, when all ten faults are
equally severe and all five test cases are equally costly, orders
A-B-C-D-E and B-A-C-D-E are equivalent in terms of rate of
fault detection; swapping A and B alters the rate at which
particular faults are detected, but not the overall rates of fault
detection. This equivalence would be rejected in equivalent
APFD graphs (as in Figure 7A) and equivalent APFD values

(50%). Suppose, however, that B is twice as costly as A,
requiring two hours to execute where A requires one.3 In
terms of faults-detected-per-hour, test case order A-B-C-D-E
is preferable to order B-A-C-D-E, resulting in faster detection
of faults. The APFD metric, however, does not distinguish
between the two orders.

Example 2. Suppose that all five test cases have equivalent
costs, and suppose that faults 2-10 have severity k, while fault
1 has severity 2k. In this case, test case A detects this more
severe fault along with one less severe fault, whereas test case
B detects only two less severe faults. In terms of fault-
severity detected, test case order A-B-C-D-E is preferable to
order B-A-C-D-E. Again, the APFD graphs and values would
not distinguish between these two orders.

Example 3. Examples 1 and 2 provide scenarios in which the
APFD metric proclaims two test case orders equivalent when
intuition says they are not. It is also possible, when test costs
or fault severities differ, for the APFD metric to assign a
higher value to a test case order that would be considered less
valuable. Suppose that all ten faults are equally severe, and
that test cases A, B, D, and E each require one hour
executing, but test case C requires ten hours. Consider test
case order C-E-B-A-D. Under the APFD metric, this order is
assigned an APFD value of 84% (see Figure 7C). Consider
alternative test case order E-C-B-A-D. The APFD for this
order is 76% lower than the APFD for test case order C-E-B-
A-D. However, in terms of faults-detected-per-hour, the
second order (E-C-B-A- D) is preferable: it detects 3 faults in
the first hour, and remains better in terms of faults-detected-
per-hour than the first order up through the end of execution
of the second test case. An analogous example can be created
by varying fault severities while holding test costs uniform.

Example 4. Finally, consider an example in which both fault
severities and test costs vary. Suppose that test case B is twice
as costly as test case A, requiring two hours to execute where
A requires one. In this case, in Example 1, assuming that all
ten faults were equally severe, test case order A-B-C-D-E was
preferable. However, if the faults detected by B are more
costly than the faults detected by A, order B-A-C-D-E may be
preferable. For example, suppose test case A has cost “1", and
test case B has cost “2". If faults 1 and 5 (the faults detected
by A) are assigned severity “1", and faults 6 and 7 (the faults
detected by B) are assigned severities greater than “2", then
order B-A-C-D-E achieves greater \”units-of fault- severity-
detected-per-unit-test-cost" than does order A-B-C-D-E.
Again, the APFD metric would not make this distinction.
Consider an example program with 10 faults and a suite of
five test cases, A through E, with fault detecting abilities as
shown in Table 3. Suppose the test cases are placed in order
A-B-C-D-E to form a prioritized test suite T1. Figure 7A
shows the percentage of detected faults versus the fraction of
T1 used. After running test case A, two of the 10 faults are
detected; thus 20% of the faults have been detected after 20%
of T1 has been used. After running test case B, two more
faults are detected and thus 40% of the faults have been
detected after 40% of the test suite has been used. In Figure
7A, the area inside the inscribed rectangles (dashed boxes)
represents the weighted percentage of faults detected over the
corresponding percentage of the test suite. The solid lines
connecting the corners of the rectangles delimit the area

Paper ID: 0201412751 2142

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

representing the gain in percentage of detected faults. The
area under the curve represents the weighted average of the
percentage of faults detected over the life of the test suite.
This area is the prioritized test suite's average percentage
faults detected metric (APFD); the APFD is 50% in this
example.

The notion that a tradeoff exists between the costs of testing
and the costs of leaving undetected faults in software is
fundamental in practice and testers face and make decisions
about this tradeoff frequently. It is thus appropriate that this
tradeoff be considered when prioritizing test cases, and so a
metric for evaluating test case orders should accommodate
the factors underlying this tradeoff. There is such a metric by
adapting the APFD metric; the new “cost-cognizant" metric is
named APFDC. In terms of the graphs used in Figure 7 the
creation of this new metric entails two modifications. First,
instead of letting the horizontal axis denotes “Percentage of
Test Suite Executed", the horizontal axis denotes “Percentage
Total Test Case Cost Incurred".

Figure 7: Example test case orderings illustrating the APFD

metric

Now, each test case in the test suite is represented by an
interval along the horizontal axis, with length proportional to
the percentage of total test suite cost accounted for by that test
case. Second, instead of letting the vertical axis in such a
graph denotes “Percentage of Faults Detected", the vertical
axis denotes “Percentage Total Fault Severity Detected".
Now, each fault detected by the test suite is represented by an
interval along the vertical axis, with height proportional to the
percentage of total fault severity for which that fault accounts.

9. Conclusion

Assuring the quality of Web services has become increasingly
more important. Organizations which depend on Web
services to fulfill their business process needs must verify that
those needs are being met even as the business processes
evolve especially for mission critical systems such as those
which directly involve customers. Therefore, regression test
selection techniques will become increasingly important to
any enterprise seeking to ensure that their services remain of
the highest quality. A framework was developed to perform
regression test selection and regression testing for the
verification of Web services based on the proposed approach
which is safe, distributed, automated, end-to-end, and handles

the composability and interoperability aspects of Web
services.

References

[1] Kreger, H., et al, Web Services Conceptual Architecture:

WSCA 1.0,
http://www306.ibm.com/software/solutions/webservices
/pdf/WSCA.pdf, May 2001.

[2] Bray, T., et al, Extensible Markup Language (XML) 1.0,
W3CRecommendation,
ttp://www.w3.org/TR/2004/REC-xml-20040204/, Feb.
2004.

[3] Gudgin, M., et al, Web Services Description Language
(WSDL) Version 2.0 Part 2: Predefined Extensions,
http://www.w3.org/TR/wsdl20-extensions/, Oct. 2004.

[4] Clement, L., et al, UDDI Version 3.0.2, UDDI Spec,
http://www.oasis-open.org/ committees/302.htm, Oct.
2004.

[5] Tsai, W. T., et al, “Scenario-based Modeling and its
Applications”, Proceedings of the 7th International
Workshop on Object-Oriented Real-Time Dependable
Systems, (WORDS 2002). pp.253-260, San Diego, CA,
Jan. 2002.

[6] Siblini, R., Mansour, N., "Testing Web Services",
Proceedings of the ACS/IEEE Conference on Computer
Systems and Applications, pp 135-142, Cairo, Egypt,
Jan. 2005.

[7] Gudgin, M., et al, SOAP Version 1.2 Part 1: Messaging
FrameworkW3CRecommendation,
http://www.w3.org/TR/soap12-part1, Feb. 2004.

[8] Pfleeger, S., Software Engineering: Theory and Practice,
Second Edition, Prentice Hall, 2001.

[9] Rothermel, G., and Harrold, M. J., “A Safe, Efficient
Regression Test Selection Technique”, ACM
Transactions on Software Engineering Methodology,
vol. 6, no. 2, pp. 173-210, Apr. 1997.

[10] Rothermel, G., and Harrold, M. J., “Analyzing
Regression Test Selection Techniques”, IEEE
Transactions on Software Engineering, vol.22, no.8,
pp.529- 551, Aug. 1996.

Author Profile

Manali Gupta received the B.Tech degree in Information
Technology from Uttar Pradesh Technical University and M.Tech
degree in Computer Science and Engineering from Amity
University, Noida in 2007 and 2013, respectively. Her research
interest includes data mining, database management systems,
fundamental study of real time operating systems and regression
testing.

Shweta Rathour received the B.Tech degree in Information
Technology from H.N.B. Garhwal University and M.Tech degree in
Computer Science and Engineering from Uttarakhand Technical
University in 2009 and 2011, respectively. Her research interest
includes network Security and database management system, web
technology.

Paper ID: 0201412751 2143

