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Abstract: Regression Testing is a major component of most major testing systems but has only begun to be applied to Web services. A 
number of different approaches have been studied to maximize the value of the accrued test suite: minimization, selection and 
prioritization. Test suite minimization seeks to eliminate redundant test cases in order to reduce the number of tests to run. Regression 
test selection optimizes the regression testing process by selecting a subset of all tests, while still maintaining some level of confidence 
about the system performing no worse than the unmodified system. Test case prioritization seeks to order test cases in such a way that 
early fault detection is maximized. 
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1. Introduction 
 
Web services have enabled business workflows to be 
extended beyond the boundaries of companies and 
organizations. Since the business world often involves very 
rapid change to keep up with current market conditions, the 
business processes inevitably need frequent adjustment, along 
with their supporting Web services. Every time the system is 
modified, we must ensure that the modification does not have 
an adverse affect on any unmodified areas, or regions, of code 
(the modification does not introduce new problems into the 
code).Typically, this is done by running the test cases 
previously used to test the system prior to modification again. 
 
This processing of “retesting” is called regression testing and 
its goal is to determine whether or not the system has been 
made worse by the modification. Reducing the number of 
tests be rerun is called regression test selection. An ideal 
regression test selection technique for the verification of Web 
service systems would have the following properties: 1) safe, 
2) interoperable, 3) compos able, 4) decentralized, 5) end-to-
end, and 6) automated. The testing and analysis of web 
services have posed new foundational and practical 
challenges, such as the non- observability problem , the 
extensive presence of non-executable artifacts within and 
among web services, safeguards against malicious messages 
from external parties, ultra-late binding and cross- 
organizational issues. Many web services (or services for 
short) use the Web Services Description Language (WSDL) 
(W3C) to specify their functional interfaces and message 
parameters. They also use XML documents to represent the 
messages. 
 
2.  Web Services 
 
Web services refer to self-contained web applications that are 
loosely coupled, distributed, capable of performing business 
activities, and possessing the ability to engage other web 
applications in order to complete higher-order business 
transactions, all programmatically accessible through 
standard internet protocols, such as HTTP (Hypertext 
Transfer Protocol), JMS (Java Messaging Service), SMTP 
(Simple Mail Transfer Protocol), etc [1]. More specifically, 
Web services are Web applications built using a stack of 

emerging standards that form service-oriented application 
architecture (SOA), an architectural style whose goal is to 
achieve loose coupling among interacting software 
components through the use of simple, well defined 
interfaces. Extensible Markup Language (XML) provides the 
basis for most of the standards that Web services are based 
on. XML is a standard that has been developed by the World 
Wide Web Consortium (W3C) [2]. XML is a text-based 
meta-language for describing data which is extensible and 
therefore used to define additional markup languages. SOAP 
is designed to be a lightweight protocol for information 
interchange among disparate systems in a distributed 
environment. The actual format consists of an envelope which 
define the contents of the messages and how to process those 
contents. Web Service Definition Language (WSDL) [3] 
provides a mechanism for describing Web services in a 
standard way. The description provides an interface for using 
the Web services, in terms of available operations, their 
names, parameters and return types. Figure 1 describes the 
web service architecture. The description binds a service, 
termed abstract endpoints in the specification, to concrete 
endpoints, which is a description of the service defined 
abstractly then bound to a concrete network protocol and 
message format. Universal Description, Discovery and 
Integration (UDDI) [4] specification provides a means to 
locate and use Web Services programmatically. Service 
providers publish high level descriptions of their Web 
services into a UDDI repository, with which their services 
can be looked up and used. This is shown in figure 1. 
 

 
Figure 1: Web Service Architecture 
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3. Regression Testing 
 
Regression testing is an important and expensive activity that 
is undertaken every time a program is modified to ensure that 
the modifications do not introduce new bugs into previously 
validated code. An important problem is the selection of a 
relevant subset of test cases from the initial test suite that 
would minimize both the regression testing time and effort 
without sacrificing the thoroughness of regression testing. 
Regression testing is performed between two different 
versions of software in order to provide confidence that the 
newly introduced features of the System Under Test (SUT) 
do not interfere with the existing features. 
 
Definition 1: Test Suite Minimization Problem 
 
Given: A test suite, T, a set of test requirements 
{r1,……..,rn}, that must be satisfied to provide the desired 
‘adequate’ testing of the program, and subsets of T, 
T1,………,Tn, one associated with each of the ri s such that 
any one of the test cases tj belonging to Ti can be used to 
achieve requirement ri. 
 
Problem: Find a representative set, T’, of test cases from T 
that satisfies all ri s. 
 
Definition 2. Test Case Selection Problem 
 
Given: The program, P, the modified version of P, P’, and a 
test suite, T. 
 
Problem: Find a subset of T, T’, with which to test P’. 
 
Definition 3. Test Case Prioritization Problem 
 
Given: a test suite, T, the set of permutations of T, PT, and a 
function from PT to real numbers, 
 
f : PT R. 
 
Problem: to find T’ ∈ PT such that (T’’)(T’’ ∈ PT)( T’’ ≠ 
T’)[f(T’) ≥ f(T’’)]. 
 
These three techniques will be collectively referred to as 
‘regression testing techniques’. 
 
4. Regression Test Selection: Problem 
 
Let P denote Version X that has been tested using test set T 
against specification S. Let P’ be generated by modifying P. 
The behavior of P’ must conform to specification S’. 
Specifications S and S’ could be the same and P’ is the result 
of modifying P to remove faults. S’ could also be different 
from S in that S’ contains all features in S and a few more, or 
that one of the features in S has been redefined in S’. The 
regression testing problem is to find a test set Tr on which P’ 
is to be tested to ensure that code that implements 
functionality carried over from P works correctly.  
 
Most safe RTS techniques rely on information about the 
program’s source code. The technique which has been 
adopted by the approach presented in this paper involves 
generating control-flow graphs from the involved code [5]. 

They are graphs in which each node represents a code entity 
and each edge represents the flow of control from one node to 
another. An additional structure needed by this particular 
algorithm is a mapping of the test cases to the control-flow 
graphs. The techniques involving control-flow graphs follow 
three basic steps, which will be covered in more detail: 1) It 
constructs a control-flow graph for P’; 2) Identifies dangerous 
edges by comparing the control-flow graph of P with the 
control-flow graph of P’; 3) Based on coverage information 
and the set of dangerous edges it selects from the test suite 
those tests that need to be rerun. A control-flow graph is a 
graph in which each node represents a code entity and each 
edge represents the flow of control from one node to another. 
For example, suppose there is a method with psuedocode 
presented in Figure 2, the control-flow graph for this method 
would look like the one in figure 3.  
 
1 order(item) - 
2 if (item exists) - 
3 if (item is in stock) - 
4 order item; 
5 return successful; 
} else  
6 return error(“ERROR: 104: item not in stock”); 
} 
} else  
7 return error(“ERROR: 109: item does not exist”); 
} } 
 

Figure 2: Psuedocode for an ordering service 
 
The process of identifying dangerous edges by comparing the 
control-flow graphs of P and P’ is one of the important parts 
of the process. Dangerous edges correspond to program 
entities that may behave differently under a single test case 
due to differences between P and P’. The regression test 
selection algorithm compares the two control-flow graphs by 
traversing the two control-flow graphs simultaneously 
looking for differences between them. If the two nodes are 
different in terms of their children or their values, the 
algorithm adds the node to the dangerous edge list. The 
algorithm is recursive and stops either when it finds a 
difference in the control-flow graph, when it reaches a node it 
has already compared, or when it reaches an exit node 
without finding a difference. 
 

 
Figure 3: Control Flow Graph for pseudocode in Figure 2 

 
For example, suppose that service A is represented by the 
psuedocode and the control-flow graph presented above 
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which was presented in Figure 2 and 3 respectively. Suppose 
after some time, the developers of service A modify the 
psuedocode to what is shown in figure 4. The differences are 
shown in italics. 
 
1 order(item) - 
2 if (item exists) - 
3 if (item is in stock) - 
4 if (customer has money) - 
5 order item; 
6 return successful; 
} else  
7 return ERROR: 103: customer lacks funds 
} 
} else - 
8 return error(“ERROR: 104: item not in stock”); 
} 
} else  
9 return error(“ERROR: 110: item does not exist”); 
} } 
 
Figure 4: Altered psuedocode for ordering service from Fig 

2. 
 
The regression test selection approach must build the control-
flow graph for this new version of the order service and that 
is shown with the original one in Figure 5. 

 
Figure 5: Control Flow Graph for pseudocode in Figure 4 

 
The algorithm which determines the set of dangerous edges 
compares the two control-flow graphs by performing a dual-
traversal as described. The result of the dual traversal marks 
the following edges dangerous: 1-2, 2-3, 2-7, and, 3-4. It 
selects these edges because the node corresponding to four is 
structurally different than the original and because the node 
corresponding to seven is textually different. The coverage 
information can easily be thought of as a table and the process 
is simply a table lookup using that coverage information. The 
technique guarantees that any test case which does not cover 
a dangerous edge, or entity, will behave exactly the same in 
both P and P’, and thus can never expose a new fault in P’. 
Since it is guaranteed to only remove those tests which can 
never expose new faults in P’, this technique is safe because it 
minimizes the number of test cases while maintaining the 
same level of confidence provided by selecting all test cases. 
For example, suppose that the original service A was 
augmented with test cases and coverage information which 
are both shown in figure 6. Note that since the code shown is 
psuedocode, the test cases will follow suit. 

Test Cases 
Inputs corresponding to three test cases 
1. Order item which does not exist 
2. Order item which does exist but is not in stock 
3. Order item which does exist and is in stock 
 
Expected outputs corresponding to the three test cases 
1. return error 
2. return error 
3. return successful 
 
Coverage Information 
1. 1-2-7 
2. 1-2-3-6 
3. 1-2-3-4-5 
 
Figure 6: Three test cases and their coverage information for 

service A 
 
The coverage table is used as lookup table and tests numbered 
one and three are selected for retesting. These tests are 
selected because the dangerous edge list prefixes these two 
tests completely. Control-flow graphs are ideal for use in 
Web service environments for a number of reasons. Firstly, 
control-flow graphs can be generated from programs written 
in any language, or extracted from designs at any granularity. 
Secondly, since control-flow graphs are special cases of finite 
state machines, they can be composed into global finite state 
machines [6]. These two characteristics of control-flow 
graphs are essential for supporting both the interoperability 
and composition of web services. 
 
5. Testing Web Services 
 
Testing web services is more challenging compared to 
traditional systems for two primary reasons; the complex 
nature of web services and the limitations that occur due to 
the nature of SOA. It has been argued [7] that the distributed 
nature of web services based on multiple protocols such as 
UDDI and SOAP, together with the limited system 
information provided with WSDL specifications, makes web 
service testing challenging. 
 
6. Test Case Prioritization 
 
The purpose of test case prioritization is to increase the 
likelihood that if the test cases are used for regression testing 
in the given order, they will more closely meet some 
objective than they would if they were executed in some other 
order. Test cases can be prioritized in terms of the number of 
statements, basic blocks, or methods they executed on a 
previous version of the software. A second way in which 
prioritization techniques can be distinguished involves the use 
of "feedback". A third way in which prioritization techniques 
can be distinguished involves their use of information about 
code modifications. Most prioritization techniques proposed 
to date focus on increasing the rate of fault detection of a 
prioritized test suite. To measure rate of fault detection we 
use a metric, APFD (Average Percentage Faults Detected), 
introduced for this purpose in [8], which measures the 
weighted average of the percentage of faults detected over the 
life of a test suite. APFD values range from 0 to 100; higher 
numbers imply faster (better) fault detection rates. More 
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formally, let T be a test suite containing n test cases, and let F 
be a set of m faults revealed by T. Let TFi be the first test case 
in ordering T’ of T that reveals fault i. 
 
7. Average Percentage Faults Detected (APFD) 

Metric 
 
To quantify the goal of increasing a subset of the test suite's 
rate of fault detection, i use a metric called APFD developed 
by Elbaum et al. [9,10] that measures the average rate of fault 
detection per percentage of test suite execution. The APFD is 
calculated by taking the weighted average of the number of 
faults detected during the run of the test suite. APFD can be 
calculated using a notation: 
 
Let T  The test suite under evaluation 
m  the number of faults contained in the program under test 
P 
n The total number of test cases 
TFi  The position of the first test in T that exposes fault i. 
APFD = 1 _ TF1 + TF2+ ........ + TFm + 1 
nm 2n 
 
So as the formula for APFD shows that calculating APFD is 
only possible when prior knowledge of faults is available. 
The APFD metric relies on two assumptions: (1) all faults 
have equal costs. (2) all test cases have equal costs. These 
assumptions are manifested in the fact that the metric plots 
the percentage of faults detected against the percentage of the 
test suite run. In practice, however, there are cases in which 
these assumptions do not hold: cases in which faults vary in 
severity and test cases vary in cost. In such cases, the APFD 
metric can provide unsatisfactory results, necessitating a new 
approach to test case prioritization that is “cognizant" of these 
varying test costs and fault severities. 
 
8. Limitations of the APFD Metric 
 
Consider the following four scenarios of cases in which the 
assumptions of equal test costs and fault severities are not 
met. 
 

Table 1: Example Test Suite and Faults Exposed 
Test Fault 

 1 2 3 4 5 6 7 8 9 10 

A X    X      

B      X X    

C X X X X X X X    

D     X      

E        X X X 

  
Example 1. Under the APFD metric, when all ten faults are 
equally severe and all five test cases are equally costly, orders 
A-B-C-D-E and B-A-C-D-E are equivalent in terms of rate of 
fault detection; swapping A and B alters the rate at which 
particular faults are detected, but not the overall rates of fault 
detection. This equivalence would be rejected in equivalent 
APFD graphs (as in Figure 7A) and equivalent APFD values 

(50%). Suppose, however, that B is twice as costly as A, 
requiring two hours to execute where A requires one.3 In 
terms of faults-detected-per-hour, test case order A-B-C-D-E 
is preferable to order B-A-C-D-E, resulting in faster detection 
of faults. The APFD metric, however, does not distinguish 
between the two orders. 
 
Example 2. Suppose that all five test cases have equivalent 
costs, and suppose that faults 2-10 have severity k, while fault 
1 has severity 2k. In this case, test case A detects this more 
severe fault along with one less severe fault, whereas test case 
B detects only two less severe faults. In terms of fault-
severity detected, test case order A-B-C-D-E is preferable to 
order B-A-C-D-E. Again, the APFD graphs and values would 
not distinguish between these two orders. 
 
Example 3. Examples 1 and 2 provide scenarios in which the 
APFD metric proclaims two test case orders equivalent when 
intuition says they are not. It is also possible, when test costs 
or fault severities differ, for the APFD metric to assign a 
higher value to a test case order that would be considered less 
valuable. Suppose that all ten faults are equally severe, and 
that test cases A, B, D, and E each require one hour 
executing, but test case C requires ten hours. Consider test 
case order C-E-B-A-D. Under the APFD metric, this order is 
assigned an APFD value of 84% (see Figure 7C). Consider 
alternative test case order E-C-B-A-D. The APFD for this 
order is 76% lower than the APFD for test case order C-E-B-
A-D. However, in terms of faults-detected-per-hour, the 
second order (E-C-B-A- D) is preferable: it detects 3 faults in 
the first hour, and remains better in terms of faults-detected-
per-hour than the first order up through the end of execution 
of the second test case. An analogous example can be created 
by varying fault severities while holding test costs uniform. 
 
Example 4. Finally, consider an example in which both fault 
severities and test costs vary. Suppose that test case B is twice 
as costly as test case A, requiring two hours to execute where 
A requires one. In this case, in Example 1, assuming that all 
ten faults were equally severe, test case order A-B-C-D-E was 
preferable. However, if the faults detected by B are more 
costly than the faults detected by A, order B-A-C-D-E may be 
preferable. For example, suppose test case A has cost “1", and 
test case B has cost “2". If faults 1 and 5 (the faults detected 
by A) are assigned severity “1", and faults 6 and 7 (the faults 
detected by B) are assigned severities greater than “2", then 
order B-A-C-D-E achieves greater \”units-of fault- severity-
detected-per-unit-test-cost" than does order A-B-C-D-E. 
Again, the APFD metric would not make this distinction. 
Consider an example program with 10 faults and a suite of 
five test cases, A through E, with fault detecting abilities as 
shown in Table 3. Suppose the test cases are placed in order 
A-B-C-D-E to form a prioritized test suite T1. Figure 7A 
shows the percentage of detected faults versus the fraction of 
T1 used. After running test case A, two of the 10 faults are 
detected; thus 20% of the faults have been detected after 20% 
of T1 has been used. After running test case B, two more 
faults are detected and thus 40% of the faults have been 
detected after 40% of the test suite has been used. In Figure 
7A, the area inside the inscribed rectangles (dashed boxes) 
represents the weighted percentage of faults detected over the 
corresponding percentage of the test suite. The solid lines 
connecting the corners of the rectangles delimit the area 
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representing the gain in percentage of detected faults. The 
area under the curve represents the weighted average of the 
percentage of faults detected over the life of the test suite. 
This area is the prioritized test suite's average percentage 
faults detected metric (APFD); the APFD is 50% in this 
example. 
 
The notion that a tradeoff exists between the costs of testing 
and the costs of leaving undetected faults in software is 
fundamental in practice and testers face and make decisions 
about this tradeoff frequently. It is thus appropriate that this 
tradeoff be considered when prioritizing test cases, and so a 
metric for evaluating test case orders should accommodate 
the factors underlying this tradeoff. There is such a metric by 
adapting the APFD metric; the new “cost-cognizant" metric is 
named APFDC. In terms of the graphs used in Figure 7 the 
creation of this new metric entails two modifications. First, 
instead of letting the horizontal axis denotes “Percentage of 
Test Suite Executed", the horizontal axis denotes “Percentage 
Total Test Case Cost Incurred". 
 

 
Figure 7: Example test case orderings illustrating the APFD 

metric 
 
Now, each test case in the test suite is represented by an 
interval along the horizontal axis, with length proportional to 
the percentage of total test suite cost accounted for by that test 
case. Second, instead of letting the vertical axis in such a 
graph denotes “Percentage of Faults Detected", the vertical 
axis denotes “Percentage Total Fault Severity Detected". 
Now, each fault detected by the test suite is represented by an 
interval along the vertical axis, with height proportional to the 
percentage of total fault severity for which that fault accounts. 
 
9. Conclusion 
 
Assuring the quality of Web services has become increasingly 
more important. Organizations which depend on Web 
services to fulfill their business process needs must verify that 
those needs are being met even as the business processes 
evolve especially for mission critical systems such as those 
which directly involve customers. Therefore, regression test 
selection techniques will become increasingly important to 
any enterprise seeking to ensure that their services remain of 
the highest quality. A framework was developed to perform 
regression test selection and regression testing for the 
verification of Web services based on the proposed approach 
which is safe, distributed, automated, end-to-end, and handles 

the composability and interoperability aspects of Web 
services.  
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