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Abstract: Floating point arithmetic units provides better accuracy, precision and it covers larger data ranges compared to fixed point. 
Designing of floating point division operator is complex compared to other data operands. In general, division operation based on 
CORDIC algorithm has a limitation in term of the range of inputs that can be processed by the CORDIC machine to give proper 
convergence and precise division operation result. This paper involves the design of Double precision floating point division operator 
using CORDIC algorithm. The new architecture of CORDIC Algorithm is proposed in this project which overcomes the limitation in 
terms of range of inputs and is capable of processing broader input ranges. The performance is evaluated for large input tests. The 
results show that the proposed system gives precise division operation results with broader input ranges. The proposed hardware 
architecture is modeled in VERILOG and synthesized on Virtex-4FPGA device (xc4vsx25). The design has achieved maximum 
frequency of 211.879MHz. 
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1. Introduction 
 
In modern digital computer architecture, performance of 
digital computer is vastly improved due to floating point 
arithmetic units. Floating-point arithmetic units is preferred 
over fixed point arithmetic units as it provides better 
accuracy and precision and it covers larger data ranges, 
which is suitable for scientific computations in engineering 
application areas. Adder, substractor, multiplier and divider 
units are considered basic operators in scientific 
computations along with other trigonometric functions such 
as sine, cosine, logarithm, exponent, etc. Floating-point 
division is hard to implement due to the complexity of the 
algorithms, compared to other floating point arithmetic 
operators. So many scientists and researchers have taken 
keen interest to introduce efficient algorithm for designing 
floating point division operator. 
 
Floating point division algorithms are classified in three 
categories: digit recurrence algorithms, lookup table and 
multiplier based algorithms, and iterative algorithms. Digital 
recurrence is the most popular class of algorithms due to its 
simplicity. SRT algorithm named by Freiman [1] is most 
popular digit recurrence division algorithm is the. Many 
variations of the original SRT division algorithm were 
thoroughly studied by Ercegovac and Lang [2]. Oberman 
and Flynn [3] discussed about overall system performance 
floating point operations including division. Design of 
floating-point division and square root in several 
microprocessor architectures were discussed by Leeser [4]. 
The earliest implementation of single precision floating-
point divider on a Xilinx XC4010 [5, 6] used a variation of 
the radix-2 SRT algorithm. The first IEEE double-precision 
floating-point divider implemented on a Xilinx XCV1000 
FPGA [7] also used the simple radix-2 digit-recurrence 
algorithm. This is a non-pipelined design so it is very small 
in area but very low in throughput with a very high latency 

of 60 clock cycles for double-precision division. Based on 
this sequential design, a pipelined design [8] was presented, 
which unrolls the iterations of the digit recurrence 
computations and optimizes the operations within each 
unrolled iteration. The maximum frequency of this pipelined 
design for double-precision floating-point divide is over 
100MHz on a Xilinx XC2V6000 FPGA while consumes a 
modest 8% of the chip area. Another work to improve the 
throughput of the division via a simple digit-recurrence 
algorithm is based on a scalable pipeline insertion method 
[9]. This is also a heavily pipelined design so it has the 
maximum frequency of over 200MHz for a single-precision 
floating point divider on a Xilinx Virtex-II XC2V1000 
FPGA.  
 
The divider is bit serial and exhibits long latency. All the 
above digit recurrence algorithms are radix 2 based. 
Floating-point dividers based on a high radix SRT division 
algorithm for radix 2, 4, and were compared [10]. Three 
implementations - a low cost iterative implementation, a low 
latency array implementation, and a high throughput 
pipelined implementation were studied. Another high radix 
SRT divider (radix 4) of both pipelined and non-pipelined 
structure [11] were implemented on Xilinx Virtex-II 
XC2V1000 and XC2V6000 FPGAs. The single-precision 
pipelined implementation takes 15 clock cycles with a clock 
rate of 9:6ns while the double-precision pipelined 
implementation takes 29 clock cycles with a clock rate of 
12:2ns. The double-precision divide [12] supporting most 
features of the IEEE Std 754 is also based on digit 
recurrence algorithms. Extending this work, more recent 
work [13] support both 64-bit double-precision divide and 
128-bit quad-precision divide on a Xilinx Virtex-II Pro 
FPGA. 
 
Lookup table based algorithms are another class of division 
algorithm. A popular approach to carry out a division is to 
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calculate the inverse of the denominator based on a lookup 
table, followed by multiplying that inverse by the numerator. 
However, the size of the table to do the inversion increases 
exponentially when the size of divider increases. 
 
So this inverse lookup table method is only feasible for 
small floating-point dividers. One work [14] built custom 
floating-point formats divider - 16 bits (1-6-9) and 18 bits 
(1-7-10) for 2-D FFT and FIR filter applications. Another 
work [15] built the floating-point divide with 8 bit output 
accuracy for a video processing application in a Xilinx 
Virtex E FPGA.As an extension of [14], the authors coded 
the inverse to reduce the required bit width of the following 
multiplication. 

The third approach for division is iterative algorithms. One 
work using iterative algorithms to implement a floating-
point divider in FPGAs was presented by Roesler and 
Nelson [16]. Based on the Newton-Rapson algorithm and 
using repeated multiplication to approximate the result, this 
algorithm requires only multipliers. However, a small 
lookup table can be added to compute the result of the first 
few iterations to reduce the total number of iterations. 
Unlike the lookup table based algorithms, larger floating-
point format 
 
Along with these methods to implement the division 
operation, there is also another powerful algorithm to 
implement the divider unit called CORDIC (COrdinate 
Rotation DIgital Computer) algorithm [17]. The main 
powerful characteristic of the CORDIC algorithm is the 
capability to implement several trigonometric function [18] 
and hyperbolic functions [19] as well as linear operational 
function such as multiplication and division functions. 
 
The paper is organized as follows. Section 2 shows basic 
architecture of CORDIC division algorithm. In section 3 we 
propose Double Precision Floating point architecture based 
on CORDIC algorithm. The convergence and calculation 
errors are presented in section 4. Synthesis results of the 
CORDIC divider core modeled in Verilog by using FPGA 
device are presented in this section.Finally section 5 
concludes the work.  
 
2. Basic Radix-2 CORDIC Division Algorithm  
 
The basic radix-2 CORDIC iteration algorithm can be 
written as follows. 

 

 
                        (1) 

If CORDIC has to implement division function then 
CORDIC Algorithm has to be configured in linear mode, i.e. 
by assigning m=0 and  in Equ. 1. Thus, the 
CORDIC iterative equation for Division operator is shown 
below. 

 

 
                      (2) 

The value of  can be either +1 or -1, depending on the 
value of  as shown in Eqn. below 

                                   (3)  

 
3. Proposed System 
 
In this brief, floating point division operator using CORDIC 
Algorithm is proposed which can overcome limitation in 
term of the range of inputs that has been processed by the 
CORDIC machine to give proper convergence. 
 
The complete division operation Q = Y/Xand its hardware 
architecture is proposed, where Qis the division operation 
result, Y is the dividend and X is the divisor. 
 
There are two basic reasons why a new algorithm is 
proposed: 
1. The CORDIC algorithm gives correct convergence when 

the expected division results are located in the following 
ranges: The values outside the range 
will tend to saturate at unexpected division operation 
results. 

2. We cannot identify, whether the division results are in the 
aforementioned range or not, unless the division has been 
made. 

3. The domain of well convergence of the CORDIC 
inversion function is shown in Equ. (4). If the domain is 
written in the IEEE binary Double precision floating-point 
standard, the domain can be described in Equ. (5) as well 
as Equ. (6) and Equ. (7) Present the exponent and 
mantissa faction. 

                                  (4) 
                        (5) 

                                 (6) 
                             (7) 

The hardware architecture is classified into four main stages 
as presented in Figure. 1. 
 

 
Figure 1: Double Precision Floating Point Division 

Architecture 
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The description of the floating-point hardware architecture is 
described as follows. 
 
1. Divisor's Exponent Detection: In this first stage, a credit 

exponent EC and e new exponent EX0 for X are computed 
using Algorithm 1. 

2. Divisor Inversion: In this second stage the inverse value 
of the new input divisor Xnew = (-1)SX *MX*2Exo is 
computed by using CORDIC algorithm presented in 
Algorithm 2 to obtain the variable Z. 

3. Alignment: In this third stage, ZA is computed from the Z 
variable whose exponent is aligned by using the credit 
exponent EC. By using a formal floating point equation, 
then we have ZA = (-1)Sz *1.MZ *2Ez-Ec , where SZ = SX. 

4. Multiplication: Finally we will have the complete 
division result as Q = Y*ZA. 

Algorithm 1[EC, EX0] =Divisor Detect(X), where X ≥1 
1. Yo=1, Zo=0, Xo=X, S0=-1 {Initialization} 
2. EX= Exponent of the Input Divisor X 
3. if EX<1022 then 
4. EC= 1022 - EX 
5. EX0 = 1022 
6. else if EX >1023 then 
7. EC = EX - 1023 
8. EX0 = 1023 
9. else 
10. EC = 0 
11. EX0 = EX 
12. end if 
13. return EC,EX0 

Algorithm 2Z=Inverting(X, I), where X ≥ 1 
1. Y0=1, Z0=0, X0=Xnew, S0=-1 {Initialization} 
2. for i = 0 to I - 1 do 
3. Xi+1 = Xi 
4. Yi+1 = Yi+ (Xi * Si * 2-i) 
5. Zi+1 = Zi - (Si * 2-i) 
6. if Yi<0 then 
7. Si+1=+1 
8. else 
9. Si+1=-1 
10. end if 
11. end for 
12. return Z 
 
4. Results 
 

The design is modeled Verilog and synthesized on Virtex-4 
FPGA devices (xc4vsx25). Table I shows the statistical 
analysis results of the CORDI Chardware over the 
computational errors compared to actual results computed 
by MATLAB. At each number of iteration, the maximum, 
the minimum and the absolute average errors as well as the 
standard-deviation of the errors are evaluated over 100 sets 
of input samples. It seems that the calculation errors 
decrease as the number of iterations is increased. 
 

 
 
 
 
 

Table 1: Statistical error calculation 
Iter. Max. Min. Abs. Mean Std. Deviation

8 3.3320 -10.3750 2.570E-3 0.2780 
16 0.0096 -0.0440 9.8750E-5 7.1450E-4 
32 0.8E-5 -3.560E-6 6.3650E-8 3.1850E-7 
64 0.65E-6 -8.780E-7 9.8670E-9 2.5760E-8 

 
The schematic of area utilization design summary shown in 
the below represents the how much of area used regarding of 
area allotted. In this project the Number of Slice Flip Flops 
available is 20,480 used only 1,854 and 9% of area utilized. 
Similarly the other parameters related to area as shown in 
Table 2 and the timing analysis is shown in table 3. 
 

Table 2: Utilization Summary 
Logic Utilization Used Available Utilization

Number of Slice Flip Flops 1,854 20,480 9% 
Number of 4 input LUTs 3,077 20,480 15% 
Number of occupied Slices 2,086 10,240 20% 
Number of Slices containing only 
related logic 

2,086 2,086 100% 

Number of Slices containing 
unrelated logic 

0 2,086 0% 

Total Number of 4 input LUTs 3,148 20,480 15% 
Number used as logic 3,076   
Number used as a route-thru 71   
Number of bonded IOB’S 195 320 60% 
Number of BUFG/BUFGCTRLs 1 32 3% 
Number used as BUFGs 1   
Average Fan out of Non-Clock Nets 3.75   
 

Table 3: Timing Analysis 
Minimum Period  4.72ns 
Maximum Frequency  211.879MHz 

 
5. Conclusion 
 
In this brief, Double precision floating-point divider 
operation based on CORDIC algorithm is presented. The 
proposed design overcomes the limitation of traditional 
CORDIC algorithm to give good convergence for large input 
ranges. The proposed design is carried out in four stages i.e. 
divisor exponent detection in first stage, then divisor 
inversion in second stage, followed by alignment in third 
stage and multiplication in last stage. The design has been 
synthesized on Virtex-4 FPGA device (XC4VSX25). The 
design has achieved maximum frequency of 211.879MHz. 
In future work, the CORDIC core reconfigured for 
implementation of many trigonometric and logarithmic 
functions which help to reduce area of the processor 
arithmetic units. 
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