
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Design and Analysis of Double Precision Floating
Point Division Operator Based on CORDIC

Algorithm

Chetan Dudhagave1, Hari Krishna Moorthy2

1M.Tech Student (SP & VLSI) Department of Electronics and Communication Engineering, Jain University, Karnataka, India

2Assistant Professor, Department of Electronics and Communication Engineering, Jain University, Karnataka, India

Abstract: Floating point arithmetic units provides better accuracy, precision and it covers larger data ranges compared to fixed point.
Designing of floating point division operator is complex compared to other data operands. In general, division operation based on
CORDIC algorithm has a limitation in term of the range of inputs that can be processed by the CORDIC machine to give proper
convergence and precise division operation result. This paper involves the design of Double precision floating point division operator
using CORDIC algorithm. The new architecture of CORDIC Algorithm is proposed in this project which overcomes the limitation in
terms of range of inputs and is capable of processing broader input ranges. The performance is evaluated for large input tests. The
results show that the proposed system gives precise division operation results with broader input ranges. The proposed hardware
architecture is modeled in VERILOG and synthesized on Virtex-4FPGA device (xc4vsx25). The design has achieved maximum
frequency of 211.879MHz.

Keywords: Floating-Point operators, CORDIC Algorithm, 64-bit IEEE Standard Double-Precision

1. Introduction

In modern digital computer architecture, performance of
digital computer is vastly improved due to floating point
arithmetic units. Floating-point arithmetic units is preferred
over fixed point arithmetic units as it provides better
accuracy and precision and it covers larger data ranges,
which is suitable for scientific computations in engineering
application areas. Adder, substractor, multiplier and divider
units are considered basic operators in scientific
computations along with other trigonometric functions such
as sine, cosine, logarithm, exponent, etc. Floating-point
division is hard to implement due to the complexity of the
algorithms, compared to other floating point arithmetic
operators. So many scientists and researchers have taken
keen interest to introduce efficient algorithm for designing
floating point division operator.

Floating point division algorithms are classified in three
categories: digit recurrence algorithms, lookup table and
multiplier based algorithms, and iterative algorithms. Digital
recurrence is the most popular class of algorithms due to its
simplicity. SRT algorithm named by Freiman [1] is most
popular digit recurrence division algorithm is the. Many
variations of the original SRT division algorithm were
thoroughly studied by Ercegovac and Lang [2]. Oberman
and Flynn [3] discussed about overall system performance
floating point operations including division. Design of
floating-point division and square root in several
microprocessor architectures were discussed by Leeser [4].
The earliest implementation of single precision floating-
point divider on a Xilinx XC4010 [5, 6] used a variation of
the radix-2 SRT algorithm. The first IEEE double-precision
floating-point divider implemented on a Xilinx XCV1000
FPGA [7] also used the simple radix-2 digit-recurrence
algorithm. This is a non-pipelined design so it is very small
in area but very low in throughput with a very high latency

of 60 clock cycles for double-precision division. Based on
this sequential design, a pipelined design [8] was presented,
which unrolls the iterations of the digit recurrence
computations and optimizes the operations within each
unrolled iteration. The maximum frequency of this pipelined
design for double-precision floating-point divide is over
100MHz on a Xilinx XC2V6000 FPGA while consumes a
modest 8% of the chip area. Another work to improve the
throughput of the division via a simple digit-recurrence
algorithm is based on a scalable pipeline insertion method
[9]. This is also a heavily pipelined design so it has the
maximum frequency of over 200MHz for a single-precision
floating point divider on a Xilinx Virtex-II XC2V1000
FPGA.

The divider is bit serial and exhibits long latency. All the
above digit recurrence algorithms are radix 2 based.
Floating-point dividers based on a high radix SRT division
algorithm for radix 2, 4, and were compared [10]. Three
implementations - a low cost iterative implementation, a low
latency array implementation, and a high throughput
pipelined implementation were studied. Another high radix
SRT divider (radix 4) of both pipelined and non-pipelined
structure [11] were implemented on Xilinx Virtex-II
XC2V1000 and XC2V6000 FPGAs. The single-precision
pipelined implementation takes 15 clock cycles with a clock
rate of 9:6ns while the double-precision pipelined
implementation takes 29 clock cycles with a clock rate of
12:2ns. The double-precision divide [12] supporting most
features of the IEEE Std 754 is also based on digit
recurrence algorithms. Extending this work, more recent
work [13] support both 64-bit double-precision divide and
128-bit quad-precision divide on a Xilinx Virtex-II Pro
FPGA.

Lookup table based algorithms are another class of division
algorithm. A popular approach to carry out a division is to

Paper ID: 0201412381 1378

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

calculate the inverse of the denominator based on a lookup
table, followed by multiplying that inverse by the numerator.
However, the size of the table to do the inversion increases
exponentially when the size of divider increases.

So this inverse lookup table method is only feasible for
small floating-point dividers. One work [14] built custom
floating-point formats divider - 16 bits (1-6-9) and 18 bits
(1-7-10) for 2-D FFT and FIR filter applications. Another
work [15] built the floating-point divide with 8 bit output
accuracy for a video processing application in a Xilinx
Virtex E FPGA.As an extension of [14], the authors coded
the inverse to reduce the required bit width of the following
multiplication.

The third approach for division is iterative algorithms. One
work using iterative algorithms to implement a floating-
point divider in FPGAs was presented by Roesler and
Nelson [16]. Based on the Newton-Rapson algorithm and
using repeated multiplication to approximate the result, this
algorithm requires only multipliers. However, a small
lookup table can be added to compute the result of the first
few iterations to reduce the total number of iterations.
Unlike the lookup table based algorithms, larger floating-
point format

Along with these methods to implement the division
operation, there is also another powerful algorithm to
implement the divider unit called CORDIC (COrdinate
Rotation DIgital Computer) algorithm [17]. The main
powerful characteristic of the CORDIC algorithm is the
capability to implement several trigonometric function [18]
and hyperbolic functions [19] as well as linear operational
function such as multiplication and division functions.

The paper is organized as follows. Section 2 shows basic
architecture of CORDIC division algorithm. In section 3 we
propose Double Precision Floating point architecture based
on CORDIC algorithm. The convergence and calculation
errors are presented in section 4. Synthesis results of the
CORDIC divider core modeled in Verilog by using FPGA
device are presented in this section.Finally section 5
concludes the work.

2. Basic Radix-2 CORDIC Division Algorithm

The basic radix-2 CORDIC iteration algorithm can be
written as follows.

 (1)

If CORDIC has to implement division function then
CORDIC Algorithm has to be configured in linear mode, i.e.
by assigning m=0 and in Equ. 1. Thus, the
CORDIC iterative equation for Division operator is shown
below.

 (2)

The value of can be either +1 or -1, depending on the
value of as shown in Eqn. below

 (3)

3. Proposed System

In this brief, floating point division operator using CORDIC
Algorithm is proposed which can overcome limitation in
term of the range of inputs that has been processed by the
CORDIC machine to give proper convergence.

The complete division operation Q = Y/Xand its hardware
architecture is proposed, where Qis the division operation
result, Y is the dividend and X is the divisor.

There are two basic reasons why a new algorithm is
proposed:
1. The CORDIC algorithm gives correct convergence when

the expected division results are located in the following
ranges: The values outside the range
will tend to saturate at unexpected division operation
results.

2. We cannot identify, whether the division results are in the
aforementioned range or not, unless the division has been
made.

3. The domain of well convergence of the CORDIC
inversion function is shown in Equ. (4). If the domain is
written in the IEEE binary Double precision floating-point
standard, the domain can be described in Equ. (5) as well
as Equ. (6) and Equ. (7) Present the exponent and
mantissa faction.

 (4)
 (5)

 (6)
 (7)

The hardware architecture is classified into four main stages
as presented in Figure. 1.

Figure 1: Double Precision Floating Point Division

Architecture

Paper ID: 0201412381 1379

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The description of the floating-point hardware architecture is
described as follows.

1. Divisor's Exponent Detection: In this first stage, a credit

exponent EC and e new exponent EX0 for X are computed
using Algorithm 1.

2. Divisor Inversion: In this second stage the inverse value
of the new input divisor Xnew = (-1)SX *MX*2Exo is
computed by using CORDIC algorithm presented in
Algorithm 2 to obtain the variable Z.

3. Alignment: In this third stage, ZA is computed from the Z
variable whose exponent is aligned by using the credit
exponent EC. By using a formal floating point equation,
then we have ZA = (-1)Sz *1.MZ *2Ez-Ec , where SZ = SX.

4. Multiplication: Finally we will have the complete
division result as Q = Y*ZA.

Algorithm 1[EC, EX0] =Divisor Detect(X), where X ≥1
1. Yo=1, Zo=0, Xo=X, S0=-1 {Initialization}
2. EX= Exponent of the Input Divisor X
3. if EX<1022 then
4. EC= 1022 - EX
5. EX0 = 1022
6. else if EX >1023 then
7. EC = EX - 1023
8. EX0 = 1023
9. else
10. EC = 0
11. EX0 = EX
12. end if
13. return EC,EX0

Algorithm 2Z=Inverting(X, I), where X ≥ 1
1. Y0=1, Z0=0, X0=Xnew, S0=-1 {Initialization}
2. for i = 0 to I - 1 do
3. Xi+1 = Xi
4. Yi+1 = Yi+ (Xi * Si * 2-i)
5. Zi+1 = Zi - (Si * 2-i)
6. if Yi<0 then
7. Si+1=+1
8. else
9. Si+1=-1
10. end if
11. end for
12. return Z

4. Results

The design is modeled Verilog and synthesized on Virtex-4
FPGA devices (xc4vsx25). Table I shows the statistical
analysis results of the CORDI Chardware over the
computational errors compared to actual results computed
by MATLAB. At each number of iteration, the maximum,
the minimum and the absolute average errors as well as the
standard-deviation of the errors are evaluated over 100 sets
of input samples. It seems that the calculation errors
decrease as the number of iterations is increased.

Table 1: Statistical error calculation
Iter. Max. Min. Abs. Mean Std. Deviation

8 3.3320 -10.3750 2.570E-3 0.2780
16 0.0096 -0.0440 9.8750E-5 7.1450E-4
32 0.8E-5 -3.560E-6 6.3650E-8 3.1850E-7
64 0.65E-6 -8.780E-7 9.8670E-9 2.5760E-8

The schematic of area utilization design summary shown in
the below represents the how much of area used regarding of
area allotted. In this project the Number of Slice Flip Flops
available is 20,480 used only 1,854 and 9% of area utilized.
Similarly the other parameters related to area as shown in
Table 2 and the timing analysis is shown in table 3.

Table 2: Utilization Summary
Logic Utilization Used Available Utilization

Number of Slice Flip Flops 1,854 20,480 9%
Number of 4 input LUTs 3,077 20,480 15%
Number of occupied Slices 2,086 10,240 20%
Number of Slices containing only
related logic

2,086 2,086 100%

Number of Slices containing
unrelated logic

0 2,086 0%

Total Number of 4 input LUTs 3,148 20,480 15%
Number used as logic 3,076
Number used as a route-thru 71
Number of bonded IOB’S 195 320 60%
Number of BUFG/BUFGCTRLs 1 32 3%
Number used as BUFGs 1
Average Fan out of Non-Clock Nets 3.75

Table 3: Timing Analysis
Minimum Period 4.72ns
Maximum Frequency 211.879MHz

5. Conclusion

In this brief, Double precision floating-point divider
operation based on CORDIC algorithm is presented. The
proposed design overcomes the limitation of traditional
CORDIC algorithm to give good convergence for large input
ranges. The proposed design is carried out in four stages i.e.
divisor exponent detection in first stage, then divisor
inversion in second stage, followed by alignment in third
stage and multiplication in last stage. The design has been
synthesized on Virtex-4 FPGA device (XC4VSX25). The
design has achieved maximum frequency of 211.879MHz.
In future work, the CORDIC core reconfigured for
implementation of many trigonometric and logarithmic
functions which help to reduce area of the processor
arithmetic units.

References

[1] C. V. Freiman. Statistical analysis of certain binary

division algorithms. In IRE Proc., volume 49, pages 91–
103, 1961.

[2] M. D. Ercegovac and T. Lang. Division and Square
Root: Digit Recurrence Algorithms and
Implementations. Kluwer Academic Publishers, Mass.,
1994.

Paper ID: 0201412381 1380

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[3] S. F. Oberman and M. J. Flynn. Design issues in
division and other floating-point operations. In IEEE
Transactions on Computers, pages 154–161, 1997.

[4] P. Soderquist and M. Leeser. Division and square root:
choosing the right implementation. IEEE Micro,
17(4):56–66, July/August 1997.

[5] M. E. Louie and M. D. Ercegovac. Mapping division
algorithms to field programmable gate arrays. In 1992
Conference Record of the 26th Asilomar Conference on
Signals, Systems and Computers, pages 371–375, 1992.

[6] M. E. Louie and M. D. Ercegovac. On digit-recurrence
division implementations for field programmalbe gate
arrays. In Proc. 11th Symposium on Computer
Arithmetic, pages 202–209, 1993.

[7] S. Paschalakis and P. Lee. Double precision floating-
point arithmetic on FPGAs. In IEEE International
Conference on Field-Programmable Technology (FPT),
pages 352–358, December 2003.

[8] A. J. Thakkar and A. Ejnioui. Pipelining of double
precision floating point division and square root
operations. In ACM Proceedings of the 44th Annual
Southeast Regional Conference, pages 488–493, March
2006.

[9] I. Ortiz and M. Jimenez. Scalable pipeline insertion in
floating-point division and square root units. In
Proceedings of the 2004 47th Midwest Symposium on
Circuits and Systems (MWSCAS’04), volume 2, pages
II–225–II–228, July 2004.

[10] X.Wang and B. E. Nelson. Tradeoffs of designing
floating-point division and square root on virtex
FPGAs. In 11th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pages 195–203, April 2003.

[11] B. Lee and N. Burgess. Parameterisable floating-point
operations on FPGA. In 36th Asilomar Conference on
Signals, Systems and Computers, volume 2, pages
1064– 1068. IEEE Signal Processing Society,
November 2002.

[12] G. Govindu, R. Scrofano, and V. K. Prasanna. A library
of parameterizable floating point cores for FPGAs and
their application to scientific computing. In The
2005International Conference on Engineering of
Reconfigurable Systems and Algorithms(ERSA 2005),
June 2005.

[13] P. C. Diniz and G. Govindu. Design of Field-
Programmable Dual-precision Floating-Point
Arithmetic Units. In Proceedings of the 16th
international conference on field-programmable logic
and applications (FPL’06), pages 733–736, August
2006.

[14] N. Shirazi, A. Walters, and P. Athanas. Quantitative
analysis of floating point arithmetic on FPGA based
custom computing machines. In IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM),
pages 155–162, April 1995.

[15] J. Dido, N. Geraudie, et al. A flexible floating-point
format for optimizing data-paths and operators in FPGA
based DSPs. In ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), pages 50–
55, February 2002.

[16] E. Roesler and B. E. Nelson. Novel optimizations for
hardware floating-point units in a modern FPGA
architecture. In 12th International Conference on Field-

Programmable Logic and Applications (FPL’02), pages
637–646, Sept. 2002.

[17] P. Surapong, F. A. Samman, and M. Glesner. Design
and Analysis of Extension-Rotation CORDIC
Algorithms based on Non-Redundant Method. In
International Journal of Signal Processing, Image
Processing and Pattern Recognition, vol. 5, no. 1, pp.
65–84, March 2012.

[18] K. Maharatna, S. Banerjee, E. Grass, M. Krstic, and A.
Troya. Modified Virtually Scaling-Free Adaptive
CORDIC Rotator Algorithm and Architecture. In IEEE
Trans. on Circuits and Systems for Video Technology,
vol. 15, no. 11, pp. 1463–1474, Nov. 2005.

[19] H. Hahn, D. Timmermann, B. Hosticka, and B. Rix. A
Unified and Division-Free CORDIC Argument
Reduction Method with Unlimited Convergence
Domain Including Inverse Hyperbolic Functions.
InIEEE Trans. on computers, vol. 43, no. 11, pp. 1339–
1344, Nov.1994.

Author Proile

Chetan Dudhagave received Bachelor of Engineering
from Rajarambapu Institute Technology,
Rajaramnagar, Shivaji University, Kolhapur in 2012
and now pursuing Master of Technology in School of
Engineering and Technology, Jain University,

Bangalore.His area of interest includes VLSI and Signal
Processing.

Hari Krishna Moorthy obtained Bachelor of
Engineering from G.V.I.T.K.G.F, Bangalore
University in 2001 and Master of Engineering from
Sathyabama University, Chennai in the year

2007.Assistant Professor in the Department of Electronics and
Communication Engineering, School of Engineering and
Technology,Jain University, Bangalore-Karnataka, India

Paper ID: 0201412381 1381

