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Abstract: In exercise physiology, a novel model based on the regulation of neural effort and fatigue has been recently proposed. This 
model theorizes that physical activity is controlled by a central regulator in the brain, and the human body works as a complex integral 
system, unlike the Cardiovascular/Anaerobic/Catastrophe model of Sir A.V. Hill of exercise physiology. In this study, physiological data 
were collected from club-level cyclists for different types of pacing that were self pace, even pace, and variable pace for a 20-km cycling 
time trial. These physiological data were analyzed to assess the underlying system control mechanisms that show how the central 
regulator paces the human body during exercise. Continuous Wavelet Transform (CWT) was used to analyze the non-stationary 
physiological signals that were heart rate (HR/bpm) and rate of volume of oxygen consumption rate (VO2/ Lmin-1). Normalised mean 
wavelet powers were used to compare the powers at different frequency bands of the continuous wavelet spectrum. These frequency 
bands were classified as High Frequency (HF), Low Frequency (LF) and Ultra Low Frequency (ULF) bands. There was a significant 
difference in the ULF band for the rate of volume of oxygen consumption (p<0.01) that decreased with increasing performance times of 
the cyclists for all types of pacing. As for the heart rate activities, both ULF and LF band powers were practically constant for all 
cyclists, and there was a significant difference in the HF band power compared to the other frequency bands. Here we show that the 
central system regulator paces the human body during physical activity by using specific frequency bands to control and communicate 
with a particular peripheral system in the aims to reach the end of that physical task without homeostasis failure. 
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1. Introduction 
 
In exercise physiology, there is an increasing need to assess 
the various complex physiological signals to verify the 
theories of physiological exercise models (Lambert et al., 
2004; St Clair Gibson and Noakes, 2004; St Clair Gibson et 
al., 2006). These models posited that physical exercise is 
modulated by a central regulator in the central nervous 
system, and the human body works as a complex integrative 
system. Previous research showed the presence of system 
control mechanisms (Tucker et al., 2006a) but not much was 
known about how these system control mechanisms sustain 
homeostasis in any physiological system especially during 
physical activity. Therefore, this study utilised a novel 
mathematical method to exercise physiology to investigate 
how the physiological systems are regulated. In order to find 
how the physiological systems are controlled, a 
mathematical method was needed to assess the biological 
activities both in time and frequency. However, time-based 
and frequency-based mathematical analyses are not suitable 
for the exploration of the irregular and non-stationary 
patterns of the complex biological signals (Mallat, 1989). 
Therefore, the continuous wavelet transform (CWT) was 
utilised to conduct time-scale analysis of the real-time 
signals which occur at every scale and time-position unlike 
the Discrete Wavelet Transform (Rioul and Vetterli, 1991). 
The advantage of CWT is that it enables any changes at 
different frequency bands of the physiological signals to be 
observed in order to provide an indirect assessment of the 
corresponding physiological system functions (Whittingstall 
& Logothetis, 2009; Rosso et al, 2002; Matsuyama et al, 
2007). 
 

2. Methods 
 
Ten healthy and well-trained male cyclists took part in this 
research study, and it was approved by the Ethics Committee 
of the School of Life Sciences at Northumbria University. 
Their mean (± standard deviation) height and body mass 
index (BMI) were 1.77 (±0.06) m, and 24.2 (±1.8) kg·m-2 

respectively. The age of the participants ranged from 25.5 to 
40.1 years.  
 
2.1 Study Protocol and Data Collection 
 
This research study was ethically approved by the School of 
Life Sciences Ethics Committee, University of Northumbria 
at Newcastle. The healthy and well-trained participants were 
required to complete a 20-km cycling exercise bout in the 
minimum possible time employing different pacing trials. 
These were: self pace (cycle as hard as they felt they could at 
any moment in time), even pace using the mean output from 
their self pace cycling time trial, and a variable pace based 
on 70% and 140% of the subject’s respective self pace 
average power output (de Koning et al., 2011; Palmer et al., 
1999). The participants completed these three different 
pacing time trials on separate occasions, in the physiology 
lab of the School of Life Sciences in Northumbria 
University, with at least one week rest in-between the trials 
for them recovery purposes and prevent a training effect 
(Flynn et al., 1994).  
 
Physiological data including heart rate (BPM) were recorded 
using a data acquisition system (Powerlab, ADI Instruments, 
Australia), and volume of oxygen consumption (V̇O2/L

.min-

1) was measured using an online gas analyser (Cortex 
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Metalyser, Cortex Biophysik, Germany). Power outputs 
were recorded at a frequency rate of 11 Hz using Velotron 
3D software which was interfaced with the Cycle Ergometer 
(VelotronPRO, RacerMate Inc., USA) that was used for all 
cycling time trials. The rating of Perceived Exertion (RPE) 
was used as a subjective measure for the sensation of fatigue 
the cyclists felt during the 20-km cycling time trial, and these 
RPE scores were obtained at every 2-km interval while 
blood samples were collected for every 4 km interval to 
determine blood lactate concentration (mmolL-1). These data 
were used to investigate how the system control mechanisms 
modulated physical activity. 
 
2.2 Data analysis 
 
The Matlab software platform version R2008a and Wavelet 
ToolboxTM 4 were used for this research study. The 
continuous wavelet transform (CWT), using Morlet wavelet, 
was applied to physiological signals including rate of 
volume of oxygen consumption, heart rate and power 
outputs (which integrate all the physiological activities of the 
various physiological systems) to obtain continuous wavelet 
spectrum coefficients. These coefficients were then 
subdivided into regions or bands that were Ultra Low 
Frequency (ULF), Low Frequency (LF) and High Frequency 
(HF) bands. The observed frequency regions were then 
classified in frequency bands (Addison, 2005; Yamaguchi, 
2003) based on the wavelet transform scales (n) where 
integer variable n ranges from 1 to 256: the scales ranging 
from 1 to 8 were classified as high frequency; scales 9 to 64 
were classified as low frequency; and scales 65 to 256 were 
classified as ultra-low frequency (Lu et al., 2006; Pichot et 
al., 1999). The inverse relationship between the 
pseudofrequency (Hz) and the scale factor using Morlet 
wavelet is depicted in Figure 1. In this way the respective 
mean wavelet normalised powers (Indiradevi et al., 2007; 
Latka et al., 2003) were determined for each frequency band 
(Equ. 1) to investigate the frequency changes (if any) and 
monitor the respective duration of these events at various 
scales or frequencies of the physiological signals to 
determine how a central regulator regulates these 
physiological systems. The mean normalised wavelet 
spectrum power was found from equation 1 where the 
variable i represents the time events at every second of the 
physiological signal up to m which represents the total 
duration of the physiological activity whereas the variable j 
represents the scale number, and finally, Coefs (i, j) 
represents the continuous wavelet transform coefficients at 
time i and scale number j with limits n and m representing 
the scale number and time respectively. 
 

  …Equ. 1 

 
Figure 1: Relationship between pseudofrequency (Hz) and 
scales 
 
2.3 Statistical analysis 
 
The wavelet powers that were determined for self pace, even 
pace and variable pace trials were tested for parametricity 
using Kolmogorov-Smirnov test (Fasano and Franceschini, 
1987). In addition a 3x3 (frequency band x pacing trial) 
factorial ANOVA with repeated measures was used to 
compare the means of the various frequency bands and any 
significant difference occurred when statistical p was less 
than 0.05 (Berger and Casella, 2001). Then, Tukey's HSD 
post-hoc test was used following the ANOVA to find any 
significant difference in the analysed variables (Field, 2009). 
If significance occurred, relationships between variables 
were then examined by calculating the product moment 
correlation coefficient r. Results were then presented as 
means ± standard deviation (S.D).  
 
3. Results 
 
The Kolmogorov-Smirnov tests showed that all the wavelet 
power data were normally distributed and the Z scores were 
in fact within the ±2 acceptable region for normality. Results 
from continuous wavelet transform analysis and correlation 
analysis are described in subsequent sections. 
 
3.1 Continuous Wavelet Transform on Physiological 
Data 
 
Figure 2 displays the wavelet spectrum analysis profiles of 
the self pace power output for a particular cyclist together 
with the associated physiological data that include the rate of 
volume of oxygen consumption and heart rate activities 
during the 20-km cycling time trial. In these wavelet 
spectrums, the shift from a dark region (low) to light 
coloured region (high) represents a transition in the signal, or 
the occurrence of an event. For example, for the heart rate 
data (Figure 2), a dark region suggests that the heart rate 
activity is homogeneous (i.e. there is no large fluctuation) 
whereas when a light coloured region is observed there is an 
abrupt change in heart rate activity. The higher amplitudes or 
change in transition are shown as lighter or brighter areas of 
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the continuous wavelet spectrum. Using the two dimensional 
view of the signal, the general (large-scale structure) and 
local (small-scale structure) behaviour and characteristics of 
the signal in time are clearly shown, which are not obvious 

from the one dimensional view of the raw physiological 
signals as depicted on top of each wavelet coefficient profile 
for each physiological variable. 

 
Figure 2: Continuous Wavelet Transform (Scale vs. time) on self pace power output, rate of volume of oxygen consumption 

and heart rate for one particular cyclist who ranked 2nd. 
 
In Figure 2, the x-axis represents time (in seconds) and y-
axis represents the scale n which varies from 1 to 256. There 
were more abrupt changes at low frequencies than at high 
frequencies of the spectrum for all physiological signals 
(power output, the rate of volume of oxygen consumption 
and heart rate), and there were more changes but less abrupt 
at high frequencies. By abrupt, it is meant that there is a big 
transition such as moving from a white region to a dark 
region of the wavelet spectrum. So using the example of the 
heart rate data, it was observed that heart rate activity 
increased abruptly at the beginning of the race and at the 
near end of the race (about three minutes before the end of 
the race which represents the endspurt) depicted by the light 
coloured regions. Moreover, during the race there were 
frequent small changes in heart rate activities as shown by 
the dark regions. In this manner the bright colour (Figure 2) 
was classified as high transition (change in amplitude) whilst 
the dark colour was classified as low transition. 
 

In addition to that, Figure 3 shows the variation in amplitude 
and frequency of the self pace power output profiles 
obtained after the wavelet transform was applied at three 
different scales 16, 128 and 200 to show the happenings or 
events in these regions. The y-axis of Figure 3 represents 
changes in the amplitudes of the power output signal for 
three chosen scales as drawn with a white line on the 
continuous wavelet transform figure and presented 
subsequently on three time-series figures. It was clearly 
observed that there were high peaks at the start and end of 
the cycling time trial. By moving to the higher data capture 
rate or frequency, recurring changes at specific intervals 
about 200 seconds can be observed by the small peaks on 
scale 16 and positions in time as compared to the broader 
small ripple peaks depicted in the scales 128 and 200 
between the time 200 seconds to 1400 seconds. Therefore, 
by moving to higher capture rate, it was possible to know 
precisely the happening of an event in time, as well as its 
corresponding pseudofrequency. 
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Figure 3: One dimensional view at specific scales (16, 128 and 200 from top to bottom respectively) of the wavelet 

coefficients obtained after CWT has been applied to self pace power output. 
 

3.2 Wavelet band powers for rate of volume of oxygen 
consumption for all cyclists 
 
For the rate of volume of oxygen consumption physiological 
activities, it was found that there was a significant difference 
(p < 0.01) between the ULF wavelet power as compared to 
both HF and LF wavelet powers that were determined for 
each type of pacing (See Table 1). However, there was no 
significant difference (p > 0.05) between HF and LF wavelet 
powers (See Appendix A, Figure A.1). In addition a small 
decrease in ULF band power with increasing performance 
times of the cyclists was also observed whereby more 
prominent decreases in ULF band power were evident for 
self pace (r = -0.77), and even pace (r = -0.66) trials than in 
variable pace trial( r = -0.16).  
 
Table 1: This table represents the mean normalised power of 
the wavelet coefficients together with the standard deviation 
for the rate of volume of oxygen consumption (V̇O2) for 
each type of pacing and for each frequency band (HF, LF 
and ULF). The symbol * means there was a significant 
difference between that frequency band power and the other 
frequency bands with statistical p < 0.05. 

Variables Self pace Even pace Variable pace
HF band power 0.033 ± 0.009 0.030 ± 0.012 0.025 ± 0.011 
LF band power 0.024 ± 0.007 0.024 ± 0.008 0.024 ± 0.008 

ULF band power 0.068 ± 0.066 ± 0.073 ± 0.005* 

0.004* 0.003* 
3.3 Wavelet band powers for heart rate for all cyclists 
 
Both ULF and LF band wavelet powers were not significant 
with mean values 0.06 (±0.4%) and 0.012 (±0.1%) 
respectively for all cyclists and for all pacing time trials (See 
Table 2). For any particular pacing time-trial, there was no 
significant difference (p > 0.05) between HF and ULF (p > 
0.05) but there was a significant difference between HF and 
LF bands (p < 0.01). Furthermore, there was a small positive 
correlation between the HF band power of heart rate 
physiological activities and performance times (r = 0.3; p = 
0.03) (See Appendix A, Figure A.2). 
 
Table 2: This table represents the mean normalised power of 
the wavelet coefficients together with the associated standard 
deviation for heart rate (HR) for each pacing and for each 
frequency band (HF, LF and ULF). The symbol * means 
there was a significant difference between that frequency 
band power and the other frequency bands with statistical p 
< 0.05. 

Variables Self pace Even pace Variable pace 
HF band power 0.1658 ± 0.1805* 0.1452 ± 0.1585* 0.1339 ± 0.1331*

LF band power 0.0128 ± 0.001 0.022 ± 0.027 0.0132 ± 0.001
ULF band power 0.066 ± 0.005 0.079 ± 0.004 0.066 ± 0.004 
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4. Discussions 
 
In order to analyse the physiological data to assess how a 
central control paces the human body or the peripheral 
systems during exercise, a continuous wavelet transform 
analysis was applied to these data to split these complex 
biological signals into specific scales and hence frequency 
bands (Mallat, 1989). For the self pace trial, there were 
sudden changes at low frequencies in the power output and 
physiological data especially at the start and at the end of the 
race (endspurt). These abrupt changes at low frequencies 
coincided with the acceleration at the beginning and at the 
end of the race (endspurt) and were consistent with common 
observations during a time-trial exercise (Ansley et al., 2004; 
St Clair Gibson and Noakes, 2004; Tucker et al., 2006a; 
Tucker et al., 2006b). Furthermore, smoother frequent 
changes occurred at high frequencies for self pace power 
output. The factors that govern the power output are the 
force applied at the pedal by the cyclist as well as the 
velocity (or cadence) at which the cyclist is moving (Gordon 
and Papadopoulos, 2004). These factors depend on the 
number and type of muscle fibres that are activated or 
recruited to generate the required force and velocity. 
According to McComas (1996), small motoneurones fire 
slowly and continually (observed as small changes in 
amplitude) and they innervate motor units that are resistant 
to fatigue as compared to large motoneurones which fire 
rapidly (the changes are for short duration) and in bursts (as 
shown by large amplitudes) that innervate motor units that 
are fatigable. This was perhaps why there were sudden 
changes in low frequency band as large motoneurones were 
triggered especially at the start and at the end of the race in 
contrast to slow and continual firing rates of small 
motoneurones that occurred in the low frequency bands 
during the race. 
 
4.1 Wavelet band powers for the rate of volume of 
oxygen consumption for all cyclists 
 
For the rate of volume of oxygen consumption, the ULF 
band wavelet power was highest as compared to the other 
frequency bands for the whole duration of the race. 
Therefore, this might be the frequency band where there was 
interactive communication between the central regulator to 
this particular physiological system. According to Sherwood 
(2005), it is the brain stem that consists of the respiratory 
control centers and generates the periodic pattern of 
breathing (Sherwood, 2005). In addition, there was a slight 
decrease in ULF band wavelet power with increasing 
cyclists' performance times, and this suggests that this 
control centre used this frequency band to regulate this 
particular physiological system (via feedforward and 
feedback information) which subsequently affected the sport 
performance of the cyclists.  
 
4.2 Wavelet band powers for heart rate for all cyclists 
 
As for the observed heart rate activities, both LF and ULF 
band powers were almost constant for all cyclists. In 
addition, the significant difference in the HF band power as 

compared to the other frequency bands, however, means that 
there was some external drive or controller (Lu et al., 2006; 
Pichot et al., 1999; Xu et al., 1998) which was using this 
frequency band, or specific range of frequencies, to control 
this particular physiological activities of that particular 
athlete despite the poor correlation between HF band power 
and increasing performance times.  
 
5. Conclusion 
 
In this study, the system control mechanisms underlying 
physiological data were investigated to see how a central 
regulator within the central nervous system paces the human 
body during exercise. It was found that the ULF band power 
for the rate of volume of oxygen consumption was highest 
for all cyclists and this ULF power decreases with increasing 
cyclists’ performance times. Moreover, there was a 
significant difference in the HF wavelet band power as 
compared to other frequency bands (i.e. HF was highest for 
heart rate activities for all cyclists). As such, there may be a 
regulator that paces the human body which uses specific 
frequency bands to control and communicate with the 
different physiological peripheral systems simultaneously. 
For there to be the simultaneous allocation of frequencies to 
modulate the physiological activities of the organ systems, 
there should be a higher level of control to these 
physiological systems. The strength in the wavelet power in 
the ULF band for respiratory system and HF band for heart 
rate activities suggest that these frequencies in fact depicted 
the behaviour of the sympathetic or parasympathetic drive 
which means that these system control mechanisms role 
were to reduce or increase such physiological system 
activities to complete a race or competition without 
catastrophic physiological system failure. 
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Appendix A  
 
A.1 The frequency band power for volume of oxygen 
consumption (V̇O2) 
 
The mean normalized wavelet power for each frequency 
band for the rate of volume of oxygen consumption 
physiological activity for all cyclists for each pacing time 
trial is depicted in Figure A.1. Moreover, the changes in HF 
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band, LF band and ULF band for this particular physiological activity are compared as shown below. 
 

 
Figure A.1: The x-axis represents the finishing times of the cyclists and the y-axis represents the normalized wavelet power 
so that the changes in the three different frequency bands can be compared. 
 
A.2 The frequency band power for heart rate (HR) 

 
The mean normalized wavelet power for each frequency band for heart rate physiological activity for all cyclists for each 
pacing time trial is depicted in Figure A.2. Moreover, the changes in HF band, LF band and ULF band for this particular 
physiological activity are compared as shown below. There was a significant difference between HF band and LF band (p < 
0.01), and there was a small positive correlation between HF band with increasing performance times of the cyclists 
(correlation r = 0.3 and statistical p =0.03). 
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Figure A.2: The x-axis represents the finishing times of the cyclists, and the y-axis represents the normalized wavelet power 
of the heart rate activities so that the changes in the three different frequency bands can be compared.  
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