
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Improving Network Management with Software
Defined Networking

A. Neeraja (13951D5811)1, Dr. N. Chandra Sekhar Reddy2, Mukund3

1Student, M. Tech CSE Department, Institute of Aeronautical Engineering, Hyderabad-500043, Andhra Pradesh, India

2Professor, CSE Department, Institute of Aeronautical Engineering, Hyderabad -500043, Andhra Pradesh, India

3Professor, CSE Department, Institute of Aeronautical Engineering, Hyderabad -500043, Andhra Pradesh, India

Abstract: Network Management is very challenging. The Maintenance, operating and providing a secured communication network is
very complex. It requires the network operators to grapple low-level vendor specific configurations to implement the high level network
policies which are complex. The rigidity of underlying infrastructure presents few possibilities of improvement or innovation, since
network devices are generally closed and vertically integrated. The solution to this problem is a new paradigm in networking; software
defined networking (SDN), which advocates the separation of data plane and control plane. This separation makes the network switches
in the data plane as simple packet forwarding devices and leaving a logically centralized software program to control the behavior of the
entire network. We focus on three problems in network management. They are enabling frequent changes to network conditions and
state, providing support for network configuration in high level language and providing better visibility and control over tasks for
performing network trouble shooting.

Keywords: SDN, Network Management, Data Plane, Control Plane and open flow

1. Introduction

To operate and maintain a computer Network is a complex
task. The projection of High level network policies requires
configuring each individual network device separately from
a heterogeneous collection of switches, routers, middle
boxes using the vendor specific and low level commands.
Apart from configuration complexity, Networks are dynamic
and operators have no mechanisms to automatically respond
to network events. It is therefore complex to implement the
required policies in such dynamic environment.

The separation of control plane and data plane lays the
ground to the Software defined networking paradigm. The
network switches tends to be the Simple forwarding devices
and the control logic is implemented in a logically
centralized controller. According to the principle it is
physically distributed. In SDN, the controller indicates the
network behavior. The logical Centralization of Control
logic in a software module which runs in a standard server in
the network operating systems offers many advantages.

It is very simple and less error prone to modify the Network
policies using Software than using the low-level device
configurations. Secondly, A control program can
automatically react to Sudden changes of the network state
and can maintain the high level policies in place. And at the
last, the centralization of the control logic in a controller
with global Knowledge of network state simplifies the
development of more Sophisticated Network functions.

SDN provides new ways to solve the Age-old problems in
Networking field. It also simultaneously enables the
introduction of sophisticated Network policies such as
security and dependability. The Main causes of Concerns lie
in the benefits of SDN Which are Network programmability
and Control logic Centralization.

2. Theoretical basis and Literature review

Very little research is done in the field of language of SDN
because this is a relatively new field. OpenFlow is the
Application Programming Interface used for the controller to
talk to the switches below where as the SDN makes it
possible to program the network, it does not make it easy.
OpenFlow controllers in todays generation offer low-level
APIs that mimic the underlying switch hardware. As such a
new platform must be created to provide programmers to
program with ease and not have to deal with the lower level
switches.

There are four problems with the current OpenFlow
program. First is that the programs do not compose because
of the interaction between concurrent modules. There are
rules for each program and when running these programs
concurrently the rules will overlap, causing programs to
break. Second problem is the low level programming
interface that impedes programmers to abstract and create
large and complex program for the network. Third problem
is the Two-tiered system architecture that forces
programmers to specify communication patterns between the
controller and each individual switches to avoid tricky
concurrency issues. The last challenge is network race
conditions that arise directly from the two-tiered system.

3. Features of Software defined Networking

Software Defined Networking (SDN) provides very
interesting features which will revolutionize the future
networks like centralize control mechanism, cost efficiency,
innovation, programmability, scalability, security,
virtualization, cloud support, automation, reliability and
efficient environment to support Big-Data. One of the main
objective of SDN is to provide innovation over the internet
or the network, this ensure very less vendor dependence.

Paper ID: 020141056 659

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Programmability by operators is feature of Software Defined
Networking which helps to put innovation into practice.
Security and reliability are the major issues in today’s
networks, SDN enhance these two aspects to the maximum.
Simple operation and cost efficiency are key factors with
openness to design and invent in SDN. Yet this openness
with respect to APIs not yet fully explored but in study this
aspect has been studied. SDN makes it easy to share
resources in an efficient manner with the feature of network
intelligence.
SDN is helpful in service aware networking too. With SDN,
Network Management has improved vastly which also give
it cutting edge on traditional networking architecture and
important determinant in future works. Networks based on
Software Defined Networking are being implemented both
on testbed and production networks. Fault tolerance property
is a key for the production networks and a most desirable &
a must for SDN networks. It is noted that with respect to
fault tolerance in SDN there are not much researches. In the
paper CORONET, a SDN fault-tolerant system is discussed.
A fault tolerance SDN architecture is stated which quickly
recover from the occurred faults and can work on highly
scalable networks. The architecture describes the recovery
from multiple links failures. SDN based networks are more
and more been deployed both on testbed and production
networking environments.

Figure 1: Architecture of SDN

4. Secure and Dependable Control Platform

Here, we present the general design of the secure and
dependable SDN control platform we propose.

4.1 Replication

One of the most important techniques to improve the
dependability of the system is replication. As can be seen in
below figure our controller is replicated, with three instances
in the example. Applications should be replicated as well.
Besides replicated instances of the controller, in the figure
we can observe application B also replicated in all controller
instances. This mixed approach ensures tolerance of both
hardware and software faults, accidental or malicious.
Replication makes it possible to mask failures and to isolate
malicious or faulty applications and/or controllers. More-

over, in case of a network partition, application B, with the
proper consistency algorithms, will still be able to program
all network switches, contrary to application A.

Figure 2: Secure & Dependable SDN

4.2 Diversity

Another relevant technique to improve the robustness of
secure and dependable systems is diversity .Replication with
diverse controllers is a good starting case. The basic
principle behind this mechanism is to avoid common-mode
faults (e.g., software bugs or vulnerabilities).For example, it
is known that off-the-shelf operating systems, from different
families, have few intersecting vulnerabilities which means
that OS diversity constrains the overall effect of attacks on
common vulnerabilities. In SDNs the same management
application could run on different controllers. This can be
simplified by defining a common abstraction for
applications (a northbound API).

4.3 Self-healing mechanisms

Under persistent adversary circumstances, proactive and
reactive recovery can bring the system back to a healthy
state, replacing compromised components, and keep it
working virtually forever. When re-placing components, it is
important that the replacement be done with new and diverse
versions of the components, whenever possible. In other
words, we should explore diversity in the recovery process,
strengthening the defense against attacks targeting specific
vulnerabilities in a system.

4.4 Dynamic device association

If a switch is associated with a single controller, its control
plane does not tolerate faults. Once the controller fails, the
control operation of the switch fails and the switch will need
to associate with another controller. For this reason, a switch
should be able to dynamically associate with several
controllers in a secure way A switch associated with
different controllers would be able to automatically tolerate
faults. Other advantages include increasing control plane
throughput several controllers could be used for load
balancing and reducing control delay by choosing the
quickest-responding controller.

5. What Is OpenFlow?

OpenFlow is an open, standards-based communications
protocol and an example of device-based SDN. OpenFlow

Paper ID: 020141056 660

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

provides access to the forwarding plane of a network switch
or router over the network, facilitating more sophisticated
traffic management, especially for virtualized and cloud
environments. The OpenFlow protocol is standardized and
managed by the Open Networking Foundation (ONF),
whose mission also includes the promotion of SDN
technologies as a whole.

In a classical router or switch, the data plane and the control
plane reside on the device. OpenFlow enables part of control
plane operations to run on external servers called controllers.
In practice, an OpenFlow API is generally a feature added to
commercial network devices, whose hardware architecture
and features remain crucial to network performance. The
standard control plane of the device remains in place and
performs traditional routing or switching. Today, most
OpenFlow-enabled devices can also support both OpenFlow
traffic and non-OpenFlow traffic, with mechanisms for
determining to which pipeline each traffic flow should be
routed.The real benefit of OpenFlow lies in the applications
that it can enable. New forms of traditional control plane
applications such as security or specialized QoS functions—
and even entirely new applications—may be written to these
controllers, as shown in Figure 1 below. This will enable
cloud and hosting providers, in particular, to develop and
market more truly differentiated services to their clients.
Traditional enterprises can also benefit from this type of
third-party network application development, for example,
in developing capabilities that help meet the operational or
regulatory requirements of their industry.

Figure 3: Controller Path

5.1 Use Cases for Control Plane Abstraction:

SDN will enable a wide variety of use cases as the
technologies mature. In the near term, these are some of the
most commonly envisioned scenarios:
 Service assurance through flow optimization in the Wide

Area Network (WAN). Public cloud providers may wish
to ensure their SLAs by maintaining visibility and control
of traffic all the way to the client’s network edge. This can
be achieved by

 deploying OpenFlow-enabled devices both at the cloud
provider edge and client ingress, with both devices
communicating to the cloud provider OpenFlow

controllers. OpenFlow can also help provide granular
control of inter-data center traffic, including backup or
disaster recovery operations.

 Service differentiation through rapid customization. As
illustrated in Figure 1, the ability to develop new features
quickly for highly specialized use cases is appealing to
many, particularly in the cloud and hosting space, as it can
provide opportunities for timely service differentiation and
incremental monetization of the network. Such use cases
might take the form of new security offerings, service
levels, or bandwidth on demand.

 Service velocity through highly scalable and easily
orchestrated network virtualization. By defining within the
controller a set of policies that can be applied to any
number of flows at need, the operator is able to truly
divorce the service delivered

 to the client from the physical locations of the
infrastructure supporting it.

5.2 Cloud SDN

Dynamic nature of cloud services requires server
virtualization to be administered in real time utilizing
network virtualization. Software Defined Networking is the
new paradigm of networking, which uses a centralized
controller to control the flow of packets in the data plane.
This new approach makes network management easier and
has ability to save costs for the organization. There has been
significant advancement in cloud computing technologies,
which has led to the development of cloud management
tools like OpenStack (An Open source Infrastructure as a
Service (IaaS) cloud computing project).

6. Future Work

The future of networking will rely more and more on
software, which will accelerate the pace of innovation for
networks as it has in the computing and storage domains.
SDN promises to transform today’s static networks into
flexible, programmable platforms with the intelligence to
allocate resources dynamically, the scale to support
enormous data centers and the virtualization needed to
support dynamic, highly automated, and secure cloud
environments. With its many advantages and astonishing
industry momentum, SDN is on the way to becoming the
new norm for networks.

7. Conclusion

SDN is a compelling development for the public sector. It
helps to simplify operations by automating and centralizing
network management tasks. It makes the network more
responsive to dynamic business and institutional needs by
coupling applications with network control. Finally, SDN
gives IT teams more agility, because they can quickly
customize network behavior for emergent business needs.
The increasing velocity of application development will
continue to drive IT organizations to deploy technologies
that allow them to scale and respond to rapidly changing
demands.

Paper ID: 020141056 661

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

References

[1] T. Koponen et al. \Onix: a distributed control platform

for large-scale production networks". In:OSDI. 2010.
[2] N. Gude et al. \NOX: towards an operating system for

networks". In: Comp. Comm. Rev. (2008).
[3] M. Caesar et al. \Design and implementation of a

routing control platform". In: NSDI. 2005.
[4] M. Casado et al. \Rethinking Enterprise Network

Control". In: ACM Trans. on Networking 17.4 (2009).
[5] P. Porras et al. \A security enforcement kernel for

OpenFlow networks". In: HotSDN. ACM, 2012.
[6] http://readwrite.com/2013/04/23/software-Definedd-

networking-dn#awesm=~omPg0fn3rysfHX
[7] Vijay K. Gurbani, M Scharf, T.V. Lakshman and V.

Hilt. Bell Laboratories, Alcatel-Lucent"Abstracting
network state in Software Defined Networks (SDN) for
rendezvous services"." Communications (ICC), 2012
IEEE International Conference on Software Defined
Networks. (2012).

[8] http://searchcloudprovider.techtarget.com/tip/Three-
models-of-SDN-explained

[9] Fl´avio de Oliveira Silva, Jo˜ao Henrique de Souza
Pereira, Pedro Frosi Rosa†, and Sergio Takeo Kofuji.
"Enabling Future Internet Architecture Research and
Experimentation by Using Software Defined
Networking". EuropeanWorkshop on Software Defined
Networking. 2012.

[10] Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J.
Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A
clean slate 4D approach to network control and
management,” SIGCOMM Comput. Commun. Rev.,
vol. 35, no. 5, p. 41–54, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/ 1096536.1096541 .

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G.Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.
Turner, “OpenFlow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol.
38, no. 2, p. 69–74, Mar. 2008, ACM ID: 1355746.

[12] Dimitris Syrivelis, George Parisis, Dirk Trossen, Paris
Flegkas, Vasilis Sourlas, Thanasis Korakis and
Leandros Tassiulas. "Pursuing a Software Defined
Information-Centric Network". European Workshop on
Software Defined Networking. 2012.

[13] Myung-Ki Shin, Ki-Hyuk Nam; Hyoung-Jun Kim.
"Software-Defined networking (SDN): A reference
architecture and open APIs". ICTC. 2012.

[14] IBM. "IBM Systems and Technology Thought
Leadership White Paper". 2012

[15] Open Networking Foundation. "Software-Defined
Networking: The New Norm for Networks". ONF
White Paper. April 13, 2012.

[16] OpenFlow switch specification Version 1.3. Open
Networking Foundation. Avaible
at:Http://www.opennetworking.org/. 2012.

[17] Open Networking Foundation. “OpenFlow /Software
Defined-networking(SDN)”.
http://www.opennetworking.org/.

Paper ID: 020141056 662

