
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor: 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Prevention to Cross-site Scripting Attacks: A
Survey

Manisha S. Mahindrakar

Assistant Professor, Computer Science and Engineering Department,

Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, Maharashtra, India

Abstract: With Internet becoming ubiquitous in every aspect of our life, there is an increase in the web applications providing day to
day services like banking, shopping, mailing services, news updates, etc. But most of these applications have vulnerabilities or security
loopholes like Cross site scripting (XSS), Cross-site request forgery (CSRF), SQL Injection which are being exploited by the hackers for
malicious purposes. Hence there is a need for API’s/automated security tools to identify and/or prevent these vulnerabilities before the
application goes live. This survey paper focuses on various security tools and prevention methodologies available to mitigate attacks due
to Cross-site Scripting (XSS) and Cross-site request forgery (CSRF) vulnerabilities.

Keywords: Web Applications, Cross-site Scripting (XSS), Cross-site Request forgery (CSRF/XSRF).

1. Introduction

With the proliferation of the Internet, there has been a surge
in the web services being offered by many corporations like
e-banking, e-shopping, etc. As most of these applications are
not developed with best security practices, there is an
increase in the malicious attacks against these services,
which exploits the vulnerabilities in these applications to
acquire material gains or to steal the credentials of the novice
users who use these web services. This has resulted in more
research focus in this domain to create new tools and
techniques to subvert these kinds of attacks. There are many
research groups in academics and industry working in this
domain to find out more secure programming practices and
tools to identify the vulnerability of these applications during
development phase and attacks during the real time.

The OWASP Top 10 report [1] lists the following as the ten
most critical web application security vulnerabilities that are
been exploited:

 Cross Site Scripting (XSS)
 Injection Flaws (SQL Injection, XPath Injection, LDAP

Injection etc)
 Malicious File Execution
 Insecure Direct Object Reference
 Cross Site Request Forgery (CSRF)
 Information Leakage and Improper Error Handling
 Broken Authentication and Session Management

 Insecure Cryptographic Storage
 Insecure Communications
 Failure to Restrict URL Access

In this paper, I have concentrated on Cross-site Scripting
(XSS) vulnerability, which facilitates the hacker to insert
some malicious script to the web application that may cause
any kind of harm to legitimate user.

Web applications have evolved from a static medium that
has user interaction limited to navigation between web
pages, to a highly interactive medium serving up
personalized content. Web language such as HTML has
capability to support dynamic data execution of web
applications required to serve personalized contents. HTML
allows inline constructs both to embed untrusted data and to
invoke code in high order languages such as JavaScript.

Due to this ad-hac evolution to support demands of the
growing web, HTML and other web languages lack the
principled mechanism to separate untrusted data (user
contents) from trusted data. As a result, there are cross-site
scripting attacks on web applications. To mitigate problem
of XSS attacks, XSS defense is required. There are various
XSS defenses categorized as shown in Fig 1.

This paper organized as follows. Section II discuss about
various XSS defenses and Section III discuss advantages and
disadvantages of each defense.

Paper ID: 02014987 414

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor: 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Types of Existing Defenses

2. Existing Defenses

XSS defences are categorized as purely server-side, purely
client-side and integrated server-client side.

2.1 Server-side Defences

Basic and primary defence for XSS is server-side validation
and filtration of the contents generated by user. Common
problem with all these mechanisms is the assumption that
parsing and rendering on client browser is consistent. Some
of the filtering mechanisms are as explained below.

Filtering:

Now days, Web applications need mechanisms to provide
users with ability to format user data (profile or comments or
blogs) with rich text ie using HTML/CSS. To provide this
functionality, developer allows user to use intermediate
language to format their posting. Many lightweight markup
languages are available like BBCode[2], Wikitext [3] and
Textile [4]. These languages are parsed and translated to
markup language as web browser understands only
HTML/XHTML.

For example:

BBcode: [url=http://www.cse.iitb.ac.in]CSE[/url]
This gets translated in HTML to render in web browser.
HTML/CSS:<aref=”http://www.cse.iitb.ac.in”>CSE
Use of such intermediate options is safest option to allow
user the subset of HTML functionality.

The other option is to allow user to input HTML/CSS
directly to format their data. But user input cannot be trusted,

so web application should be able to detect and remove
malicious code in user's data if any. There are few solutions
developed to detect and remove malicious code.

Following are the few solutions:

Striptags():
The striptags() is PHP function which is used to cleanup
HTML. It is worst to detect and remove XSS attacks as it
could not validate attributes of tag. Attribute's value can be
used to insert malicious code for exploiting web application.
Validation of attributes can be achieved with a series of
regular expressions that strip out on event. But still web
application may remain vulnerable to XSS due to quirky
browser behaviour. [5]

HTML_safe:
HTML_Safe mechanism involves parsing HTML with a
SAX parser and performing validation and filtering
depending on the handlers called. strip_tags can only strip
tags. HTML_safe strips down all active content, including
tags, attributes and values of attributes. [6][9]. This parser
strips down all potentially dangerous content within HTML
like:
 Opening tag without its closing tag
 Closing tag without its opening tag
 It also has blacklisted some of the tags, attributes and

protocols like javascript:,vbscript:,about:
 Active contents in style tags

Kses: Kses is an HTML/XHTML filter written in PHP. It
removes all unwanted HTML elements and attributes and it
also does several checks on attribute values. Kses helps to
avoid XSS.[7]

Paper ID: 02014987 415

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor: 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Kses uses set of API's to allow users to configure the filter to
add and remove protocols, tags and also its attributes. Users
are supposed to be very cautious in using API’s, as different
ways of using API’s results in different functionality.

HTMLawed: The set of features provided by htmLawed are
appreciable as it can auto-correct and beautify HTML
markup and restrict HTML elements (tags), attributes and
URL protocols in the input. It also balances tags and checks
for proper nesting of HTML elements. HtmLawed is highly
customizable. This filter is very useful to make text with
HTML more secure. This filter removes all occurrences of
scripts. It does not validate script to check its vulnerability
for XSS.[8]

HTML purifier: It is a standards-compliant HTML filter
library written in PHP. Developers of HTML Purifier claims
that it will remove all scripting code by auditing it
thoroughly, which is the loss of functionality provided. It is
big code to fit in one file and has huge includes list. Due to
big code it takes more time to give results. That means it is
slow as compared to HTMLawed. [10]

Filtering and validation cannot detect XSS attacks which are
commingled with trusted code. Solutions like XSS Guard
[13] and Blueprint tries to prevent XSS attacks by
dynamically learning the set of scripts that a web application
intends to create, for any HTML request. It then removes
any script from the output which is not intended by the web
application. Problem with these types of defenses is that they
have to consider all browser quirks because browser is the
one who detects and processes the scripts and render the web
page.

2.2 Client-side Defences

I have further sub-categorized Client-side defences as
Application-level firewall, auditing system and Proxy based.

Application-level Firewall:

These types of firewalls (filters) mitigate XSS attacks by
preventing attacker's script leaking sensitive data to
attacker's server. These filters monitor the flow of sensitive
information within website and aims in blocking the script
which tries to send information to the web site of different
domain.

Auditing system:
These types of filters block injections typically by matching
the contents of HTTP response with the contents of HTTP
request that generated the response. These types of filters
often get success in detecting reflected XSS attacks but fails
in detecting stored XSS attacks.

Low Performance: The filter could re-implement exactly the
same process as the browser, but such a filter would double
the amount of time spent in parsing the HTTP response. For
example, noXSS [11] contains an entire JavaScript parser.
This type of filters gives perfect reliability by lowering the
performance. Low performance is quite unacceptable for
todays web sites as they contain lots of images and videos.

Also these types of filters can easily get bypassed by using
special characters and encoding methods in attack string.

Low Reliability: These filters approximate the process at
browser by using set of regular expressions instead of
simulating the complete process. These regular expressions
work faster than complete HTML parser but it increases the
number of false positives.

Proxy based:
Proxy based method involves sending a request to a server,
keeping a copy of HTML tags on a client side proxy and
then forwarding the request to the web server. On receipt of
the response, the HTML tags are checked for the tags that
were sent within the request. If any tags match, the response
is marked as XSS vulnerable.

This method is advantageous as it is simple to implement
and configure on the client side. There is little overhead
because the checking of HTML is done on the client side.

Another web proxy based solution is to use white-listed
domains. These solutions can use both manual and
automatically generated rules to detect and mitigate XSS
attacks. The rules are used to specify allowed and denied
domains. Manual rules are the ones specified by user. User
has to use wild cards to permit or deny requests matching the
rules. A firewall prompt is another method to generate rules.
According to this method, request generates prompts to
allow or deny in case it does not match with any of the
existing rules. In this type user can specify permanent or
temporary rules. Temporary rules remain active for present
session whereas permanent rules remain permanently in the
policy file. Lastly user can specify a session for generating
rules, in which tool generates rules based on domains visited
by user during that session.

2.3 Integrated Server-Client Defenses:

Assumption in this approach is that web application knows
what the legitimate scripts are. So web application helps the
client side (browser) to isolate the legitimate contents from
user (untrusted) contents either by using policy or
randomizing the code.

Based on server policies:

In this kind of defenses, Web application embeds a policy in
its pages that specifies which scripts are allowed to execute.
Whenever browser encounters a script while parsing the
response, it enforces the embedded policy perfectly before
execution of the script. One of the defense of this type is
Browser enforced embedded policies (BEEP)[12]. This
defense prevent script injection depending on two
observations, first is Browser perform perfect script
detection and second is web application developer knows
exactly what scripts should be executed for application to
function properly.

The advantage of this type of XSS defense is, they are easy
to implement. Policies are flexible means can be changed

Paper ID: 02014987 416

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor: 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

whenever required. Browser need not to modify much to
enforce the embedded policy.

Instruction set randomization: Instruction Set Randomization
(ISR) is a technique to obscure the instruction set. In order
for the injected code to have the intended effect, the attacker
must know the instruction set of the target application.
Hence, a general technique for defusing code injection
attacks is to obscure the instruction set from the attacker.
Instruction Set Randomization (ISR) is a technique for
accomplishing this by randomly altering the instructions
used by a host application. By changing the instruction set,
ISR defuses all code injection attacks.

In Noncespaces[14], Web application randomizes XML tag
prefixes before delivering a document to client. Due to
randomization, it becomes hard for attacker to predict the
prefixes, so injected attack fails. It is dom-based solution; it
cannot prevent the attack, which target client-side scripting
code, which processes user (untrusted) contents in unsafe
manner during its execution.

Another approach of this type is xJS[15], features of this
approach are as follows
 It collaborates between server-side and client-side.
 Know exactly what is intended by server.
 This solution can be applied to already existing web

applications with minor changes as solution is
implemented on apache web server.

 Apache web server is more popular to host web
applications.

 Randomization of scripts is done at apache web server.
 Less overhead at server as lightweight XOR operation is

used for randomization.

3. Advantages and Disadvantages

This section will discuss about advantages and disadvantages
of each scheme.

By study and analysis of server-side XSS solutions, I can
conclude that Filtering and validation is useful as first level
of defense against XSS and limit XSS to certain level. Some
of these solutions are really helpful to avoid XSS provided it
either needs to configure (set many parameters) carefully
(HTMLawed) or hamper the performance of web
application. (HTML-Purifier) Absence of balanced approach
which differentiates between malicious and non-malicious
XSS attacks is matter of concern for security of web
application.

One major difficulty with client-side defence ie firewalls
(filters) is that, now-a-days many websites frequently export
data to third party web sites. For example Modern web sites
often have rich interaction with other web sites via
advertising and gadgets. So there is need to differentiate
between benign and malicious data. For this purpose, Filters
use sophisticated analysis techniques like taint tracking and
static analysis.
Other difficulty with this type of filters is, it fails to prevent
attacks performed by breaking confidentiality of victim's

session with target (vulnerable) web site. For example many
web sites provide a user-to-user messaging facility. On such
web sites attacker can send victim's confidential information
to his or her own user account in a user-to-user message.
Later attacker can login to these web sites to read or retrieve
stolen information. Another example of such attacks is
banking web site. Attacker can transfer money from victim's
account to his or her own account on banking web site.

Proxy-based solutions are simple to implement and
configure on the client side. There is little overhead because
the checking of HTML is done on the client side.

The major disadvantage of this technique is that it is not very
smart. It will mark any HTML that is returned that matches
the request as XSS vulnerable, even though it is safe. A
technique to fix this error is to apply a length constraint to
tags checked, but this is still not a fool proof technique to
prevent the incorrect XSS vulnerability indication.

The advantage of BEEP [12] XSS defense is, It is easy to
implement. Policies are flexible means can be changed
whenever required. Browser need not to modify much to
enforce the embedded policy.

The main disadvantage of this kind of defenses is that they
fail to apply web application's logic perfectly. As a result
they easily get attacked with white-listed scripts. If the attack
contains white listed scripts then browser enforced policy
allows the script for execution and attack works successfully.
These types of attacks are called mimicry attacks.

4. Future Scope

After studying all these prevention and detection tools, we
can design Model API which will work very fine in stripping
out the legitimate cross-site scripts (XSS), XSS worms and
virus as well. Tool should be solution to all server side
scripting languages like PHP, JSP and ASP.

References

[1] OWASP Top 10, The Ten Most Critical Web

Application Security vulnerabilities,
http://www.owasp.org/images/e/e8/OWASP_Top_10_2
007.pdf, Last Accessed: July 7, 2009.

[2] BBCode, http://en.wikipedia.org/wiki/BBCode, Last
Accessed: July 7, 2009.

[3] Wikitext, http://en.wikipedia.org/wiki/Wikitext, Last
Accessed: July 7, 2009.

[4] Textile, http://textism.com/tools/textile/, Last Accessed:
July 7, 2009.

[5] Strip_tags–Manual,
http://php.net/manual/en/function.strip-tags.php, Last
Accessed: July 8, 2009.

[6] HTML_Safe, http://pear.php.net/package/HTML_Safe/,
Last Accessed: July 8, 2009.

[7] Kses, http://sourceforge.net/projects/kses/, Last
Accessed: July 8, 2009.

[8] htmLawed:
www.bioinformatics.org/phplabware/internal_utilities/ht
mLawed/index.php, Last Accessed: July 8, 2009.

Paper ID: 02014987 417

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor: 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[9] Safe_HTML_Checker,
http://simonwillison.net/2003/Feb/23/safeHtmlChecker/,
Last Accessed: July 8, 2009.

[10] HTML Purifier, http://htmlpurifier.org/, Last Accessed:
July 8, 2009.

[11] addons.mozilla. https://addons.mozilla.org/en-
us/firefox/addon/noxss/

[12] BEEP T. Jim, et al. WWW 2007, Tahoma R. Cox et al.
S&P 2006, Browsershield C. Reis et al. OSDI 2006.

[13] Prithvi Bisht and V.N. Venkatakrishnan, XSS-GUARD:
Precise Dynamic Prevention of Cross-Site Scripting
Attacks, Springer-Verlag Berlin, Heidelberg ©2008, pp.
23 - 43

[14] Matthew Van Gundy, Hao Chen, “Noncespaces: Using
randomization to defeat cross-site scripting attacks”,
Elsevier Advanced Technology Publications Oxford,
UK, UK, Volume 31 Issue 4, June, 2012, PP 612-628.

[15] Elias Athanasopoulos, Antonis Krithinakis, Spyros
Ligouras, Evangelos P. Markatos, and Thomas
Karagiannis. “xjs: Practical xss prevention for web
application development”, 2010

Author Profile

Manisha Mahindrakar received the B.E. and M.
Tech. degrees in Computer Science and Engineering
from SGGSIET, Nanded, MH 2001 and Indian
Institute of Technology, Bombay, MH in 2011
respectively. She is working as Assistant professor in

computer Science and Engineering Department form 2004 till date.

Paper ID: 02014987 418

