
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Client Side Filter Enhancement using Web Proxy

Santosh Kumar Singh1, Rahul Shrivastava2

1M Tech Scholar, Computer Technology (CSE) RCET, Bhilai (CG) India,

 2Assistant Professor, CSE Department, RCET Bhilai (CG) India

Abstract: In early days, web pages always use a state for keeping an authentication state between browsers and web applications called
cookies, these cookies are sent to the browser by the web server’s after the users have been successfully authenticated. Every request that
contains the valid cookies will be automatically allowed by the web sites without any further check. The cookies are used to identify and
authenticate the client; therefore they are an interesting target for web attackers. Cross Site Scripting attack (XSS) is the popular attacks
which is often used to steal the information from a client machines. If any cookie has been stolen by the unauthenticated users then
essential and sensitive information will be disclosed. In this paper, we introduce a new technique for securing cookies from
unauthorized users called “Dynamic Cookies rewriting”, this technique aims to make the cookies meaningless for XSS attacks. Our
technique is implemented in a web proxy where it will automatically randomize the cookie value that is sent back and forth between the
users and the web applications.

Keywords: Cookies; Cross Site Scripting; Client Site Attack; XSS Attacks;

1. Introduction

Cross-site scripting vulnerabilities during the early days of
the World Wide Web are being very dangerous against
sensitive information. Attackers may attack cookies and steal
important information stored in the cookies. In the network
application, in order to improve the user experience, there is
a trend that scripting languages (mostly JavaScript) have
been widely used. However, this trend also makes XSS
(Cross-Site Scripting attacks) one of the most serious threats
to Internet. XSS attacks is to reveal the most direct harm to
the user privacy of sensitive information, and make users’
personal computers infected with viruses. XSS attacks are
essentially referred to the illegal scripts injected in a web
page. When a user browses the page suffered XSS attacks,
the scripts embedded in the web page will be triggered,
resulting in some malicious attack effect.

A. Types of Attacks

There are two well known types of the XSS attacks:
1. Non-persistent
2. Persistent.

(1) Non-persistent (or reflected) XSS
Non-persistent XSS means that malicious code is not
persistently stored in a vulnerable server, but it is
immediately echoed by the vulnerable server back to a
victim. For example, if the victim is accessing
www.bank.com in order to do an online transaction, in the
same time the victim may also be accessing
www.attacksite.com, and be persuaded into clicking on a
below link: [1]

Figure 1: Non-persistent XSS attack [1]

When the unauthorized user clicks on the link of the page,
the malicious script will be sent to the web server
(www.bank.com) as a requested page. Once the web server
cannot find the requested page, it will usually return an error
page. The web server may also decide to send an
identification of the requested site in the error page which is
actually the malicious script. When the malicious script is
executed on the user’s platform, the cookies of the
www.bank.com will then be sent to the www.attacksite.com.
An owner of the www.attacksite.com may use those cookies
to impersonate the victim with respect to the
www.bank.com.

(2)Persistent (or stored) XSS

Persistent XSS means that the malicious code is persistently
stored in a server’s and may later be embedded in an HTML
page sent to the victim. For example, a script showed in
which it is posted on an online message board of the
www.bank.com.

Figure 2: Persistent XSS attack [1]

The victim who reads a message will receive the malicious
script as a part of the message. The victim’s browser will
then execute the malicious script which will later send the
cookies of the www.bank.com to the www.attacksite.com.
Again the malicious script can read the cookies of the
www.bank.com because it was loaded from the
www.bank.com which has the same origin as the cookies.

B. Cookies

Cookies are information which are stored on a client
computer. They are designed to hold a limited amount of
data specific to a particular user and site, and can be accessed
either by the server or the user computer. This allows the

Paper ID: 02014905 14

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

server to send a page tailored to a particular client, or the
page itself can contain script which is aware of the
information in the cookie and so is able to carry data from
one visit to the website (or related site) to another side. [1]
In general the cookies can be categories into two types:
session cookies and persistent cookies.
 Session cookies are limited in used; they are discarded

when the browser is stopped.
 Persistent cookies can be kept for long time until they

expire, they are stored on a local disk and survive across
a computer restarts.

Figure 3: Web server and client exchange the cookies [1]

C. Web Proxy

In computer networks, a proxy is a server (an any comport
system or an application) that acts as an intermediary for
requests from browser searching resources from other sites.
A client may connects to the proxy server, for requesting
some services, such as various files, connection setup, web
pages, or other resource available from a different sites and
the proxy server evaluates the client request as a way to
simplify and control its complexity. Proxies were constructed
to add structure and encapsulation to distributed services
today; most proxies are web proxies, providing access to
content on the World Wide Web.

Figure 4: Web Proxy intercepts both HTTP and HTTPs [1]

D. Protection of Cookies

Besides privacy issues, cookies also have various technical
lacking point. In particular, they do not always exactly
identify users, they can be used for security attacks in the
browsers, and they are often at odds with the

Representational State Transfer (REST) software
architectural style [1].
A) Inaccurate identification

If multiple browsers are used on a computer, each usually
has a unique storage area for cookies. Hence cookies do
not identify a client, but a combination of a user Id, a
computer, and a browser. Thus, a person who uses more
than one account, multiple computers, or browsers must
have multiple sets of cookies.

B) Inconsistent state on client and server
The use of cookies may create an inconsistency between
the state of the user and the state has kept in the cookie. If
the client gets a cookie and then clicks the "Back" button
of the client, the state on the client is usually not the
identical as before that acquisition.

C) Inconsistent support by devices
The trouble with using mobile devices cookies is that
most devices do not employ cookies; for example, Nokia
only chains cookies on 60% of its mobile, while Motorola
only chains cookies on 45% of its set.

2. Background and Related Work

The cookies are always used to keep the information about
the session IDs or personal sensitive information in the web
applications. Cookies are information which stored in small
text files, in client computer.
When a web server sends a web page to a client, the
connection is shut down, and the server forgets everything
about the client.

Cookies are made to rectify the problem that how to keep
information about client:
 When a client visits a web page, his name can be stored in
a cookie.
 Again the client visits the same or different page then the
cookie knows his name.

When a client requests a page from a remote server, cookies
concerned to the requested page is mentioned to the client
request. This way the server accepts the important
information to "remember" data about client. Server sends
needed data to the user’s browser in the form of a cookie.
The client machine retrieves the cookies from remote server,
and it will be stored as a simple text record on the user’s
database. Now, when the browser arrives at another link on
the site, the user sends same cookie to the remote server for
retrieval. If cookie retrieved from client machine, remote
server remembers what was stored earlier.

Cookies are a plain text data record of 5 variable-length
fields:
 Expires: When cookie expires
 Domain: Site identification which indicates the name.
 Path: the address of the page or site’s where the cookie is

stored.
 Secure: If “secure” word is stored by this column then the

session will only be accessed with a secure web server. In
case of empty, no such restriction exists.

 Name=Value: Value of cookie. Important part of the
session.

Paper ID: 02014905 15

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Cookies were basically designed to keep session ID’s and by
cookies session data will automatically transferred between
client and server, so script on server may write and read
cookie values that are stored on the client.

In client side script JavaScript may also manipulate cookies
using the cookie property of the session object. JavaScript
can do all the task about the cookie or cookies that apply to
the current web page. Architecture of Exploiting the XSS
Vulnerability
XSS attacks are those attacks against the web applications
which is often used to steal the cookies from a web
browser‘s database. The following figure1 is an architecture
which shows the sequence of steps of exploiting the XSS
vulnerability by a malicious attacker.

Figure 4: Architecture of Exploiting the XSS Vulnerability.

[1]

The above figure shows three useful states i.e. Attacker state,
Victim state and Vulnerable Web application state. By using
some steps we can understand the working of figure. These
steps tell us how exploiting the XSS attack:-

 In first step, the attacker has searched that the web

application which is vulnerable to XSS attacks. After then,
attacker posts a Java Script Code on the Vulnerable Web
page whose function is to hack cookies of the victim‘s
browser.

 In second step, the victim accesses the vulnerable web
page by entering the user-id and password. In response
web server of web page generates and sends the cookie of
that particular session to client‘s web browser.

 In third step, the client browser get’s the malicious Java
Script Code and executed on its browser.

 In fourth step, the Java Script Interpreter of the victim
browser gets involved and sends the cookies of the client
browser to the attacker‘s domain.

 Now in the last, these cookies will be used by the attacker
to access whole information from the client browser and
get into the account of victim.

After all, the attacker gets successes to enter in victim’s
browser and exploited on the victim domain. It may be
dangerous for the victim domain because all information
related to side, which stored in cookie will be transferred to
attacker’s domain and he can steal the sensitive information.

3. Related Methodology and Limitation

Previous methodology presented a method called Dynamic
Hash Generation Technique. The main objective of this
method is to protect the cookies from attackers. This method
is successfully implemented on the server site without major
modification required on the client browser. By using this
method, web server will generates the random value also
called hash value to the browser’s domain, therefore client
browser will keep the random value of cookies in its memory
instead of original value. Now every time, if the client
browser rebuilt a connection i.e. active connection, the client
must include the random value of cookie into its request
therefore the web server must also rewrite all random values
into its original format. This original format again used by
the server for further work.

Cookies in which three attributes (name, domain and path)
are specified for the identifying the cookies uniquely. The
table contains both original and hash cookie value of
victim’s domain:

Table 1: Original and Hash Value of Cookie
Name Domain Path Original Value Hash Value

Cookie1 www.sample.com /root1 789pqrs +$@2g
Cookie2 www.exa.com /root2 567sdfg %$^$4

In this paper, the Dynamic Hashing Generation Technique
used on the server side, which is used to generate the hash of
value of name attribute in the cookie. All the other attributes
(i.e. domain and path attributes as shown in the Table 1) will
remain same. Following are some of the steps which are used
to explain the Dynamic Hashing Generation Technique:-

 The victim from the client side submits the user-id and

password to the web server of the web page.
 The web server submits the corresponding information

from the victim and generates session cookies.
 Now the web server will dynamically generates the hash

value of original value of the name attribute in the session
cookie and stores both these values (original as well as
hash value) in the form of a table on the server side.

 Subsequently, the web server will send the generated
random value of the name attribute in the session cookie to
the victim’s web browser.

 The victim’s browser will store this random value of name
filed into its repository.

Since the cookies (hash version) of victim’s database now
are not valid for the web pages. Therefore XSS attack will
not be able to use stolen cookies which are generated into its
random form. Now if the victim wants to reconnect to the
web server considering the part of the active connection, it
has to include session cookie (hash value) with its
corresponding request to the web server. The web server will
use the database stored in the table to rewrite back the values

Paper ID: 02014905 16

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

of name attribute in the session cookie (sent by the web
browser) to the original value created by the web server [1].

4. Limitation

Dynamic hash generation is done in the server site, but most
of vulnerability attacks found in client side so if server
creates dynamic hash value to the client machine then it
would be slow in process and due to remote area server have
to monitor the hash value returned from browser each time.
Therefore the task of the server increases each time and also
travel time will be increase due to long distance between
server and client.

5. Proposed Methodology

Our methodology carried out from previous technique where
we also create dynamic hash value but in client side as well
as we also create dynamic hash value of four fields. We
create a web proxy for dynamic hash method which
randomizes all four original values in to the dynamic hash
value. The creation of four dynamic hash values will deviate
the thief who wants to access the cookie value. He will not
be able to understand the original cookie name as well as its
original value. In this technique all four fields as well as their
original values will be randomize before send to the client
memory. Further at request time of the client the hash values
will be taken from the client and proxy will convert all hash
values in the original form and send to the server. If
unauthorized person has accessed the fields from client
memory and tries to identify the original value then he has to
first identify the name of all the fields and then their
respective value that would be so tedious and would be time
consuming therefore the generation of hash values of four
fields will be more secure as compare to single field hash
generation. Here are the original values of cookie sent by
server:

Table 2: Original value of Cookie

Original Field Name Domain Path Value
Original Value Cookie1 www.google.com ./Root Abc123

Further the web proxy will convert the original value into
hash value and send these values to the client machine. As
the browser stores the hash value of cookies, so even the
XSS attack can steal the cookies from browser‘s database,
the cookies cannot be used later to hijack or take off the
user‘s session. Cookies will be secured.

Table 3: Hash Value of Cookie

Hash Field $%^& &^%^^ %^&&* #$%^^
Hash Value $%^45 #$%@#34$% %^&12 &&^^%$

After randomizing the value of the cookie it is send to the
browser’s memory. At the requesting time web proxy will
access the hash value which is stored in the browser’s
memory and convert it’s into original format and sends again
to server.

Figure 5: Web Proxy sends Hash value to Browser

6. Result and Analysis

Result of this approach will be increase the security of the
cookies. It improves the speed of the transportation of the
cookies. If attacker found the cookie of the browser and tries
to decrypt the hash values of four fields then he has to
identify the sequence of the four fields as well as all
corresponding values. This process will be time consuming,
till then user will be finished his work and will be off line. In
the hash generation we use four fields, which are as follows:

 Server sends new session cookie to the victim and web

proxy will generate its random value using random
function before sending to victim’s browser.

 After generating in hash format web proxy will send all
random values to the victim’s browser.

 Random value will be stored by the computer Memory of
the victim.

Strengths
 The proposed method described above does not affect the

performance of victim’s browser.
 This method is used by web proxy therefore it is too secure

with respect to victim’s browser.
 Even if attacker will perform the XSS attack to steal the

cookies from browser’s machine, the attacker will get the
hash version of the cookies which are not appropriate to
impersonate the users.

7. Conclusion

This paper represents the method which helps browser’s to
prevent disclose information stored in the cookies. Because
cookies stores random values instead of original values.
Randomization of values is good idea to hide the cookie
field’s values against the attackers. When an attacker attacks
on the client machine and tried to find out the cookies stored
in the system and finally he stolen the cookie, but during the
reading the values of the cookie he will have to convert all
random values in its original format that is almost too critical

Paper ID: 02014905 17

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 7, July 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

and till then user may complete his work and get out from
the site. The method may be implemented in various
browsers and may protect the system cookies. The result of
the technique is beneficial for client side

References

[1] Shashank Gupta, Lalitsen Sharma, Manu Gupta, Simi

Gupta,” Prevention of Cross-Site Scripting
Vulnerabilities using Dynamic Hash Generation
Technique on the Server Side” International Journal of
Advanced Computer Research2012

[2] Yu Sun, Dake He ” Model Checking for the Defense
against Cross-site Scripting Attacks” 2012 IEEE

[3] Jonathan R. Mayer, Third Party Web Tracking: Policy
and Technology, IEEE 2012

[4] Jyoti Snehi, Dr. Renu Dhir,” Web Client and Web Server
approaches to Prevent XSS Attacks” IJCT 2013

[5] Daniel Bates, Adam Barth, Collin Jackson, Regular
Expressions Considered Harmful in Client-Side XSS
Filters. IW3C2 2010

[6] Angelo Eduardo Nunan, Eduardo Souto, Eulanda M. dos
Santos, Eduardo Feitosa, “Automatic Classification of
Cross-Site Scripting in Web Pages Using Document-
based and URL-based Features” IEEE 2012

Paper ID: 02014905 18

