Microfilariosis in Dogs – An Emerging Cause for Renal Failure

Ambily, V.R1, Usha. N. Pillai2

1Assistant Professor, Department of Clinical Veterinary Medicine, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India
2Associate Professor, Department of Clinical Veterinary Medicine, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India

Abstract: Filariasis is a disease of great public health importance in the country. It can remain asymptomatic for years. Since Kerala is an endemic focus of brugian filariasis, we have to consider the role of natural filarial infections as one of the possible cause for increasing incidence of renal failure in human beings and dogs. The present study was carried out to elucidate the possible role of microfilariae in renal diseases in dogs. Hundred dogs above 6 months of age presented to Veterinary college hospital with clinical signs suggestive of microfilariae were subjected to detailed study and treatment trials. Serum samples were collected from all the animals, blood urea nitrogen (BUN) and creatinine were analysed and compared with healthy controls. Urine samples of microfilaraemic and six healthy controls were analysed for specific gravity, bile pigments and protein, urine protein creatinine ratio, γ glutamyl transferase, alkaline phosphatase (ALP) and N-Acetyl-β-D-Glucosaminidase (NAG). Ultrasonographic evaluation of kidneys of a few affected animals revealed hypereneic areas in medullary region and renal pelvis with corresponding reduction in corticomedullary delineation indicating advanced renal damage.

Results of biochemical and urinalysis revealed elevated levels of BUN, creatinine, urine protein creatinine ratio, NAG, ALP, proteinuria with low specific gravity. Two animals died during the course of treatment were subjected to postmortem examination and lesions indicating chronic interstitial nephritis were observed. Results of ultrasonographic evaluation, biochemical and urinalysis and histopathological evaluation were highly correlated to suggest an impending renal insult. Nephrotoxic changes could be reversed if treatment instituted at an early stage. This renal pathology in canine microfilariosis suggested the involvement of toxic and immunological effects of filarial parasites in the pathogenesis of the disease.

Keywords: Microfilaria, Dirofilaria, Brugia, Renal failure, Ultrasonography, NAG

1. Introduction

Filariasis is a disease of great public health importance. It can remain asymptomatic for years. Since Kerala is an endemic focus of brugian filariasis, we have to consider the role of natural filarial infections as one of the possible cause for increasing incidence of renal failure in human beings and dogs. The present study was carried out to elucidate the possible role of microfilariae in renal diseases in dogs.

The World Health Organization has initiated the global programme to eliminate lymphatic filariasis (GPELF) by the year 2020 by Mass Drug Administration (MDA). According to Showketh Ali et al. (2007) the performance of the first round of MDA programme launched in Kerala during the year 2005 was poor and main reasons cited for poor performance were inadequate public awareness, fear of drug reactions etc. Canine filariasis is mainly caused by Dirofilaria repens, Dirofilaria immitis, Dipetalonema reconditum, Dipetalonema grassi, Dipetalonema dracunculoides, Brugia pahangi etc. Recent work conducted at the Department of Clinical Veterinary Medicine, College of Veterinary and Animal Sciences, Mannuthy detected human filarial parasite Brugia malayi in canines. In addition to the reasons cited, the presence of this parasite in canine population may also contribute to the poor performance of MDA programme. Recent surveys conducted by Kanaran (2007) revealed the increased incidence of renal failure in canine population. Langermann et al. (1997) demonstrated and characterized renal disorders in asymptomatic human microfilaraemic carriers from Brugia malayi endemic areas of Kerala. Literature on microfilariasis in human beings revealed that brugian filariasis is one of the major cause for renal failure in human beings which might be due to the toxic and immunological effects of the parasite.

2. Materials and Methods

Dogs above 6 months of age brought to the Veterinary College Hospital, Mannuthy, with clinical signs suggestive of filariasis viz., anorexia, fever, oedema of limb and scrotum, conjunctivitis and lymphangitis were utilized for the present study. Animals screened positive for microfilariae by wet film examination were subjected to detailed clinical examination and clinical procedures like Ultrasonography. Pre and post treatment (7 days after treatment) serum samples were collected from all these animals, blood urea nitrogen and creatinine were analysed and compared with healthy controls. Urine samples of microfilaraemic and six healthy controls were analysed for specific gravity, bile pigments and protein, urine protein creatinine ratio, γ glutamyl transferase, alkaline phosphatase (ALP) and N-acetyl-β-D-Glucosaminidase (NAG) and the data were statistically analysed. All the animals were treated with microfilaricidal drugs. Two animals died during the course of treatment were subjected to postmortem and histopathological examination using standard procedures.

3. Results and Discussion

Out of hundred animals screened for microfilaria by wet film examination, circulating microfilaria could be detected...
in 80% of dogs. Staining of blood smear with giemsa (1:10) demonstrated that 16 out of 80 dogs were positive for sheathed microfilaria and remaining were nonsheathed.

Ultrasonogram of kidneys revealed hyperechoic areas in medullary region and renal pelvis and also echogenicity of cortex was increased with decreased cortical thickness and corresponding reduction in corticomedullary delineation. These observations are indicative of renal parenchymal diseases in dogs as suggested by Walter et al. (1987).

Mean blood urea nitrogen concentration of healthy control and day 1 and 7 of animals were 16.29±3.46, 33.84±5.10 and 27.84±4.82 mg/dl respectively. Mean serum creatinine value of healthy controls and day 1 and 7 of microfilaremia dogs were 0.33±0.09, 2.35±0.77 and 1.32±0.31 mg/dl respectively. Pre treatment serum biochemical values of microfilaremia animals showed a statistically significant increase in BUN and creatinine when compared to healthy controls. These findings were in agreement with Ananda and D’souza (2006) and Hashem and Badawy (2008). This might be due to severe kidney dysfunction and intravascular haemolysis associated with the infection as opined by Kitagawa et al. (1989). Immune mediated glomerular nephritis, glomerulo sclerosis (Grauer et al, 1989) chronic interstitial nephritis and amyloidosis (Rawlings, 1986) were observed in dogs infected with Dirofilaria immitis and this might have contributed to the elevated BUN and serum creatinine in the present instance also.

Qualitative urinalysis using dipstick revealed the presence of urine protein (4+) with a mean specific gravity of 1.010. Similar observations were made by Forterre et al. (2004) and Raila et al. (2007) in dogs with chronic renal disease. Proteinuria with reduced specific gravity suggested renal involvement. Microalbuminuria was an important indicator of early renal damage (Langston, 2004) and was always associated with underlying systemic disease. The presence of kidney disease was indicated by a significantly elevated proteinuria in humans with lymphatic filariasis from Brugia malayi endemic areas of Kerala (Langharnrner et al., 1997).

The urinalysis of microfilaremia dogs revealed significant increase in NAG, γ GT and ALP when compared to nonmicrofilaremia dogs. N-acetyl-β-D-glucosaminidase (NAG) and γ-glutamyl transpeptidase (GGT) are renal tubular enzymes which are primarily located in the lysosomes and brush border respectively of the proximal convoluted tubule and these enzymes were released into the urine as a result of renal tubular injury (Clemo, 1998). Increases in urine NAG and GGT indices allow for earlier detection of renal tubular damage in dogs as reported by Brunker et al. (2009). The measurement of activity of renal tubular enzymes like NAG, GGT and alkaline phosphatase were more sensitive for detection of acute renal damage than the current standard veterinary diagnostic tests like assessment of serum creatinine, blood urea nitrogen (BUN) and urine specific gravity (Cowgill and Francey, 2005). Increased urinary NAG activity was observed by Kanaran (2007) in dogs with chronic renal failure and Langharnrner et al. (1997) in human brugian filariasis patients from Kerala.

On autopsy and histopathological examination, the kidneys revealed vacuolation, necrosis and predominantly hyalinization and atrophy of glomeruli with the presence of dense granular deposits adjacent to the glomeruli, diffuse tubular necrosis with desquamation of tubular epithelium and fibrous tissue proliferation in the interstitium indicating chronic interstitial nephritis. This is consistent with the findings of Kamalu (1991) in dogs infected with Dirofilaria repens and Shirota et al. (1979) in Dirofilaria immitis infected dogs. The renal tubules with hyaline cast indicating the presence of proteinuria. Persistent proteinuria, being a marker of renal disease was associated with progressive glomerular and tubulointerstitial lesions resulting in loss of nephrons as observed by Grauer (2005) in dirofilariasis.

To conclude elevated levels of BUN, creatinine, urine protein creatinine ratio, NAG, ALP, proteinuria with low specific gravity confirmed the renal involvement in microfilaremia dogs irrespective of the type of microfilaria involved in the disease process. Renal pathology in canine microfilariasis suggested the involvement of toxic and immunological effects of these parasites in the pathogenesis of the disease as suggested by Kamalu (1991). Post treatment biochemical values and ultrasonographic observations indicated that nephrotoxic changes could be reversed if treatment instituted at an early stage. Early diagnosis of this condition is facilitated by the estimation of urinary enzymes such as NAG, GGT and ALP.

References


Author Profile

Dr Ambily, V. R, a post graduate in Clinical Veterinary Medicine, presently working as Assistant Professor, Department of Clinical Veterinary Medicine, College of Veterinary and Animal Sciences, Mannuthy, Kerala Veterinary and Animal Sciences University. Awarded Young Scientist Award in the year 2010 for outstanding research in Veterinary Medicine.

Dr Usha Narayana Pillai, a PhD holder in Clinical Veterinary Medicine, working as Associate Professor, Department of Clinical Veterinary Medicine, College of Veterinary and Animal Sciences, Mannuthy. Kerala Veterinary and Animal Sciences university. Awarded Smt. Ava Roy Gold medal in the year 2013 for outstanding research and teaching excellence in the field of Veterinary Medicine. Received lot of recognitions and awards for research activities.