
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Test Data Generation for Basis Path Testing Using
Genetic Algorithm and Clonal Selection Algorithm

Poonam Saini1, Sanjay Tyagi2

1M. Tech scholar, Department of Computer Science and Applications, Kurukshetra University Kurukshetra, India

2Assistant Professor, Department of Computer Science and Applications, Kurukshetra University Kurukshetra, India

Abstract: Test data is needed for testing the software which can be generated automatically and manually. Manual generation of test
data involves a lot of efforts. Therefore automated test data generation methods are used. To find the suitable test data for a program,
optimization should be applied on test data. In this paper, two optimization techniques, Genetic Algorithm (GA) and clonal selection
algorithm have been used. This paper presents how these optimization tools generate the optimized test data that satisfy the basis path
testing criteria. The paper also presents the results conducted on a set of programs that evaluate effectiveness of the techniques
compared to the random-testing technique.

Keywords: Basis Path Testing, Clonal Selection Algorithm, Genetic Algorithm, Software Testing, Test Data Generation.

1. Introduction

Software Testing is done to detect presence of faults, which
cause software failure. Therefore, testing process becomes
complex and time consuming task as the software size
increases, which accounts for approximately 50% of the cost
of a software system development [1].

Generally, the goal of Software Testing is to design a set of
minimal number of test cases such that it reveals as many
faults as possible. Absolutely, automation of Software
Testing reduces the development cost of a program and also
the execution time. Path testing is a structural testing method
that finds every possible executable path from the source
code of a program. The method ensures that every path
through a program has been executed at least once. Since it is
impossible to cover all paths in software, the path testing
method selects a subset of paths to execute and find test data
to cover it. Basis path testing is the testing technique of
selecting the paths providing a basis set of execution paths
through the program. Automation of the testing process
includes a number of steps, such as Test Data Generation,
test case execution and analysis of test results. Test-data
generation is a process of identifying a set of program input
data, which satisfies given testing criterion. The traditional
methods used for generation of test data are random method,
symbols implementation of laws, procedures &
instrumentation and iterative relaxation method etc [2].
However, their practicality and the efficiency in large-scale
projects are relatively poor. So, a technique should be used
that can be efficient for automatic generation of test data.
Search-based optimization techniques (e.g., hill climbing,
simulated annealing, and Genetic Algorithms, clonal
selection algorithm) have been applied to a wide variety of
software engineering activities including cost estimation,
next release problem, and test-data generation [3].

The Test Data Generation problem can be transformed to the
test data search optimization problem. Several search based
test-data generation techniques have been developed [4]-[9].
Some of these techniques had focused on finding test data to
satisfy a wide range of control-flow testing criteria [7], [8],

[10] and the other techniques had concentrated on generating
test-data for covering a number of data-flow testing criteria
[11], [12]. For example, Pargas et al. [4] presented a Genetic
Algorithm directed by the control-dependence graph of the
program under test to search for test data to satisfy all-nodes
and all-branches criteria. Michael et al. [5] discussed the use
of GAs for automatic test-data generation to satisfy
condition-decision test-coverage criterion. Wegener et al. [6]
presented a test environment for automatic generation of test
data for statement and branch testing. These techniques
evolve a set of test data using genetic operations (selection
and recombination) to find the required test data. All GA-
based test-data generation techniques except Bottaci [7] and
Girgis [8] provided techniques only for control-flow
coverage criteria such as statements, branches, path, and
conditions, whereas Bottaci [7] provided a technique for
mutation testing and Girgis [8] presented a technique for
data-flow test-coverage criteria. Srivastava and Kim[1] had
worked on Control Flow Graph (CFG) for path coverage
such that every path should be traversed. They have
demonstrated that Genetic Algorithm technique finds the
most critical paths for improving Software Testing
efficiency. Sthamer [9] focused on generating test data by
using structural test coverage using Genetic Algorithms.
Euclidean distance is used by Korel [10] to quantify the
distance between two paths of the control flow graph. Lin
and Yeh [11] discussed about automatic Test Data
Generation using path testing criteria and Genetic
Algorithms. Ahmed and Hermadi [12] attempted to generate
test data for multiple paths using Genetic Algorithm. Ghiduk
et. al. [13] proposed an approach to generate test data using
du (definition use) paths coverage. Xu et. al. [16] presented a
clonal selection algorithm to generate the path-oriented test
data.

Many GA based test data generators adopted statement or
branch coverage as their objectives, however, by nature, path
coverage criteria covers statement and branch coverage. In
other words, if testing can be designed to force execution of
all paths, every statement in the program will have been
guaranteed to be executed at least one time and every
condition will have been executed in its true and false sides

Paper ID: 02014387 995

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[14], which make it the highest coverage. The main objective
of using search based techniques lies in the ability to handle
input data which may be complex in nature. Thus, the
problem of Test Data Generation is treated entirely as an
optimization problem. The benefit of using GA and CSA is
that through the search and optimization process, test data
sets are improved in a manner that they are at or close to the
input domain.

This paper presents the utility and implementation of both
algorithms to automatically generate the test data to ensure
the complete coverage of the target path. This target path is
given to the algorithm as an input and the test data are
generated using different set of operators. In this paper, a
comparison is also shown between the performances of these
algorithms.

2. Basis Path Testing

It is one of the oldest structural testing techniques [15]. This
technique is based on the control structure of the program.
On the basis of that control structure, a flow graph is
developed and it is assumed that all possible paths can be
covered at least once during testing. Here, modified version
of path coverage criteria is used, which is the most general
criteria, when compared to other logic coverage criteria. The
problem with the path coverage is that program that contains
loops can have an infinite number of possible paths and it's
impractical to test all those paths.
Practically, it is possible to apply path testing for a specific
subset of paths in the control flow graph. This mechanism
aims to compute the logical complexity of a procedural
design and defines a set of execution paths. Test data are
generated in such a way that they will execute every
statement at least once. Genetic Algorithms could be applied
to path testing if the target paths are clearly defined and an
appropriate fitness function related to this goal is built.
Steps for basis path testing are:
1) Draw the CFG for a program.
2) Calculate the cyclomatic complexity which provides the
number of independent paths.
3) Determine the basis set of independent paths.
4) Based on the independent paths, choose appropriate test
data for execution.

3. Genetic Algorithm

Genetic Algorithms (GA) are direct, parallel and stochastic
method for global search and optimization, which is used to
find approximate or exact solutions based on the principles
of natural evolution, described by Charles Darwin. GA is an
evolutionary algorithm so can be applied to many
optimization problems for generating the test plan for
Software Testing and in many other areas. GA is suitable
when an optimized function cannot be solved with more
accurate deterministic methods [16]. The Genetic Algorithm
uses the three main principles of the natural evolution:
reproduction, selection and diversity of the species,
maintained by the differences of each generation with the
previous. Genetic Algorithms work with a set of individuals
which are the strings of chromosomes, representing possible
solutions of the task. Each chromosome has a fitness value
associated with and this fitness determines the probability of

survival of an individual chromosome in the next generation.
The population is iteratively recombined and mutated to
generate successive new populations [9].
Outline of a basic Genetic Algorithm:
1. [START] Initially the population is randomly generated

of n chromosomes.
2. [FITNESS] Evaluation of fitness value for each

chromosome.
3. [NEW POPULATION] Genetic operators like Selection,

Crossover, and Mutation are applied for creating new
generation.

4. [REPLACE] Old population is replaced by newly
generated population.

5. [TEST] If the specified condition is satisfied, stop and
return the solution.

In this paper, algorithm presented is implemented in
MATLAB R2009a to generate the optimized set of test data.
Here the problems are taken and coded as m-file and by
using the Genetic Algorithm toolbox to generate test data,
which helps to obtain optimized data. GA requires the
number of variables, which are needed to be set and then size
of the population also needed to be set. Population size has
great effect on the GA speed to obtain an optimum solution.
Mutation and Crossover operators help the GA to generate
the solution which is in the range of local optima [4].

4. Clonal Selection Algorithm

The Clonal Selection Algorithm (CSA) [17] is also an
optimization algorithm based on biological immune system,
in which the antigen corresponds to the problem to be solved
and the antibody corresponds to a solution to the problem.

This algorithm can be used in basis path testing by encoding
random test data (input values) as antibodies. The test data
are evaluated based on affinity function (referred to as fitness
function in GA). This affinity function is a description of
how best the individual test data perform in code coverage.
The antibody clone each population to produce their own
clones based on affinity value. In CSA, the process of
crossover is overcome by performing hyper-mutation
operation [18]. This step helps in achieving diversified test
data. The process of cloning and hyper-mutation continue till
the stopping criterion is encountered. Each antibody clones a
clonal population according to the affinity, where better
members clone more antibodies. Diversification of the
antibodies is achieved through mutation and selection
process. The process of cloning, hyper-mutation and
selection continues until the termination condition is
encountered.

5. Proposed Work

The aim of the work is to improve the fitness function as
well as to generate the optimal test data. For improving the
fitness function of branch predicates, Korel’s Distance
Function [10] is used. In Korel’s distance function, branch
predicates are used in the form of relational expression.
Using this function, branch predicates are evaluated, as basis
path testing includes both statement testing and branch
testing. In this paper, both techniques Genetic Algorithm and
clonal selection algorithm are used for the generation of the

Paper ID: 02014387 996

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

optimized test data. The system for generating automated test
data for feasible basis paths using GA and CSA has been
coded in MATLAB. The basic outline for both algorithms is:
a) Test Data Generation using GA:

Input: Randomly generated numbers (initial population
act as test data) based on the target path to be covered.
Output: Test data for the target path.
i. Gen = 0

ii. While Gen < 100
iii. Do
iv. Evaluate the fitness value of each chromosome based

on the objective function.
v. Use roulette wheel as selection operator, to select the

individuals to enter into the mating pool.
vi. Perform two-point cross over on the individuals in

the mating pool, to generate the new population.
vii. Perform bitwise Mutation on chromosomes of the

new population
viii. Gen = Gen +1

ix. go to Step iii.
x. End

xi. Select the chromosome having the best fitness value
as the desired result (test data for target path).

b) Test Data Generation using CSA [17]:
i. Gen = 0

ii. Initialize random population A0.
iii. Evaluate Affinity Function An
iv. if Gen > 100 then
v. output= test data

vi. Exit
vii. Else

viii. Clone An to An'
ix. Hyper-mutate An' to An"
x. Evaluate and Select An"

xi. Destroy and renew to construct a new population An
xii. Gen++

xiii. end if
xiv. goto Step iii.

6. Experiments and Results

Experiment has been done in MATLAB using optimization
tool by taking a number of programs as case study for
automated Test Data Generation. The experimental settings
and results obtained in generating optimal test data are
shown below:

Table 1: Experimental setup
Genetic Algorithm Clonal selection algorithm

Coding: Binary string,
Chromosome length:20 bits

Coding: Binary string,
Antigen length: 15 bits

Population size (N): 20 Population size (N): 20

Selection method: roulette
wheel,

Two-point cross over(pc): 0.8,
Mutation probability(pm): 0.1

Selection method: roulette wheel,
Hyper Mutation (pm): 0.15

Nr = N/2; Ns = Nr/10;
Ns-Worst antibodies; N= no. of

generation
Nr-Renewed antibodies.

Stopping criteria: # of
generations = 100

Stopping criteria: # of generations
= 100

The implementation of code coverage and Test Data
Generation for a target path using the GA and CSA were

carried out and the results are shown in table 2 by applying
the experimental settings shown in table 1.

Table 2: Comparative results of number of test data
generated by randomly, GA and CSA

Programs Random GA CSA
Square 49.51 56.67 60.01

Square root 35.63 42.50 56.67
Quadratic equation 43.24 47.22 54.28

Trigonometric function 41.37 42.50 44.28
Linear equation(2 variables) 34.51 42.50 50.01
Linear equation(3 variables) 32.77 34.48 56.68

Area of rectangle 37.10 37.78 48.57
Triangle classification 31.71 56.62 58.34

7. Conclusion

In software testing, the generation of testing data is one of
the key steps, which have a great effect on the automation of
software testing. Since manual generation of test data
consumes much of the computational time, the process of
Test Data Generation has been automated. Software Testing
is also an optimization problem with the objective that the
efforts consumed should be minimized. Therefore, the search
based optimization techniques Genetic Algorithm and clonal
selection algorithm are used. To generate suitable data,
methods were traversed to cover each node. Test data values
were selected based on fitness/affinity values of antibodies
which satisfy the predicate node. Based on the predicate
node condition, both algorithms were applied and optimal
test data was generated. Also, both techniques are compared
with random testing to show that the test data generated by
search based techniques are better than random testing as the
number of test data generated for random testing is less
optimal than GA, CSA.

References

[1] P. R. Srivastava and T. Kim, “Application of Genetic
Algorithm in software testing”, International Journal of
software Engineering and its Applications, 3(4), pp.87
– 96, 2009,

[2] S. Zhang, Y. Zhang, H. Zhou, Q. He, “Automatic Path
Test Data Generation Based on GA-PSO”, Proceedings
of International Conference on Intelligent Computing
and Intelligent Systems, pp. 142-146, 2010.

[3] M. Harman, "The current state and future of search
based software engineering", Proceedings of the
International Conference on Future of Software
Engineering, pp. 342-357, IEEE Press, May 2007.

[4] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test Data
Generation using Genetic Algorithms”, Journal of
Software Testing, Verifications, and Reliability, vol. 9,
pp. 263-282, 1999.

[5] C. C. Michael, G. E. McGraw, M. A. Schatz,
“Generating software test data by evolution”, IEEE
Transactions on Software Engineering, vol.27, no.12,
pp. 1085-1110, 2001.

[6] J. Wegener, A. Baresel, H. Sthamer, “Evolutionary test
environment for automatic structural testing”, Journal
of Information and Software Technology, vol. 43, pp.
841-854, 2001.

Paper ID: 02014387 997

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[7] L. Bottaci, “A Genetic Algorithm fitness function for
mutation testing”, Seminal: Software Engineering
Using Metaheuristic Innovative Algorithms, 2001.

[8] M. R. Girgis, “Automatic Test Data Generation for data
flow testing using a Genetic Algorithm”, Journal of
Universal computer Science, vol. 11, no. 5, pp. 898-
915, 2005.

[9] H. Sthamer, “The Automatic Generation of Software
Test Data Using Genetic Algorithms”, PhD thesis,
Great Britain, 1996.

[10] B. Korel, “Automated software test generation”, IEEE
Trans. On Software Engineering 16(8): 870–879, 1990.

[11] J.C. Lin, and P.L. Yeh, “Automatic Test Data
Generation for path testing using GAs”, Information
Sc., vol.131, pp.47-64, 2001.

[12] M.A. Ahmed, and I. Hermadi, “GA based multiple
paths test data generator”, Computers and Operations
Research, 2007.

[13] A.S. Ghiduk, M.J. Harrold, and M.R. Girgis, “Using
Genetic Algorithms to Aid Test-Data Generation for
Data-Flow Coverage”, 14th Asia-Pacific Software
Engineering Conference, IEEE, pp.41-48, 2007.

[14] C. C. Michael, G. E. McGraw, M. A. Schatz and C. C.
Walton, “Genetic Algorithm for Dynamic Test Data
Generation” Proceedings of the 12th International
Conference of Automated Software Engineering, vol.1,
issue 5, pp: 307-308, Nov.1997.

[15] N. Chauhan, Software Testing - Principles and
Practices, Oxford University Press, 2011.

[16] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addision-Wesley,
Reading, MA, 1989.

[17] X. Xu, Y. Chen, X. Li, and D. Guo, “A Path-Oriented
Test Data Generation Approach for Automatic
Software Testing”, Proceedings of 2nd International
Conference on Anti-counterfeiting, Security and
Identification, IEEE, pp. 63-66, 2008.

[18] J. Brownlee, “Clonal Selection Algorithms”, CIS
Technical Report 070209A, February 2007.

Author Profile

Dr. Sanjay Tyagi obtained his Master’s degree
(Master of Computer Applications) and PhD
(Computer Science & Applications) from Kurukshetra
University, Kurukshetra. Currently, he is Assistant
Professor in the Department of Computer Science and

Applications, Kurukshetra University, Kurukshetra, Haryana, India.
His research interests are in Genetic Algorithm and Software
Testing. He has presented 30 papers in National & International
Conferences.

 Ms Poonam Saini obtained her B. Tech (Computer
Science and Engg.) degree from Kurukshetra
University. Currently, she is pursuing M.Tech
(Computer Science & Applications) from the
Department of Computer Science and Applications,

Kurukshetra University, Kurukshetra, Haryana, India. Her research
interests are Genetic Algorithms, Soft Computing methods and
Software Engineering.

Paper ID: 02014387 998

