
Duality for vector optimization problems with cone
constraints involving support functions

Priyanka Yadav

University of Delhi,
New Delhi-110007, Delhi, India.

priyanka21maths@gmail.com

Abstract
In this work, first and higher order duality is dis-
cussed for vector optimization problems with cone
constraint where every component of the objective
function contains a term involving the support func-
tion of a compact convex set. It is an attempt to
remove certain omissions and inconsistencies in the
work of Kim and Lee (Nonlinear Anal. Theory Meth.
Appl. 71 (2009),2474-2480).
Keywords: vector optimization, cones, Mond-Weir
dual, invexity, quasi-(pseudo)invexity, higher order
type I functions, higher order pseudoquasi-type I
functions, higher order (F, ρ) type I functions, higher
order (F, ρ)-pseudoquasi-type I functions.

1 Introduction
Duality theory has played an important role in the
development of optimization theory. Duality in lin-
ear programming was first introduced by John Von
Neuman [16] and was later studied by Dantzig and
Ordan [3]. Isermann ([4], [5]) developed multiob-
jective duality in linear case, while the results for
the nonlinear case have been given by Jahn [6], Luc
[9] and others. The study of higher order duality
is important due to computational advantage over
first order duality as it provides better bounds for
the value of the objective function when approxi-
mations are used because there are more parameters
involved. Many researchers like Mangasarian [11],
Mond and Weir [14] established higher order duality

for a vector optimization problem with non-negative
orthant as the cone. Mishra and Rueda [13] formu-
lated a number of higher order duals to a nondiffer-
entiable programming problem and established dual-
ity under the higher order generalized invexity con-
ditions introduced in ([12], [13]). In this paper, cer-
tain shortcomings in definitions and dual models dis-
cussed by Kim and Lee in ”Nondifferentiable higher
order duality in multiobjective programming involv-
ing cones, Nonlinear Anal. Theory Meth. Appl. 71
(2009),2474-2480.” is pointed out. Modified (Cor-
rected) version of these definitions and dual formu-
lations are presented. Similar omissions in [7] have
been corrected.

2 Notations and Definitions

If x, y ∈ Rn, then x = y ⇐⇒ xi ≥ yi, i =
1, 2, ..., n;x ≥ y ⇐⇒ x = y and x 6= y;x > y ⇐⇒
xi > yi, i = 1, 2, ..., n. x � u is the negation of
x ≤ u. All vectors shall be considered as column
vectors.

Definition 2.1. A set K ⊆ Rn is said to be a cone if
αx ∈ K, ∀x ∈ K,α ∈ R and α ≥ 0.

A cone is said to be a convex cone if it is also a con-
vex set apart from being a cone.
Consider the following multiobjective programming
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problem:

Minimize f(x) +A(x) = (f1(x) + s(x | D1)

, f2(x) + s(x | D2), . . . , fl(x) + s(x | Dl))

subject to − g(x) ∈ C∗, x ∈ Rn

(NMP)

where,

(i) f = (f1, f2, . . . , fl) : Rn → Rl, g =
(g1, . . . , gm) : Rn → Rm are differentiable
functions.

(ii) C is a closed convex cone with nonempty inte-
rior in Rm and C∗ is the negative polar cone of
C.

(iii) Di are compact convex sets in Rn.

(iv) A(x) is a notation for the vector (s(x |
D1), s(x | D2), . . . , s(x | Dl))

T .

Let C ⊆ Rm be a closed convex pointed (C ∩−C =
{0}) cone with vertex at the origin with nonempty
interior. The negative polar cone C∗ is defined as
follows:

C∗ = {y ∈ Rm : zT y ≤ 0,∀z ∈ C}

Definition 2.2. A feasible point x̄ is a weakly effi-
cient (efficient) solution of (NMP), if there exists no
feasible point x such that f(x) + A(x) < f(x̄) +
A(x̄) (f(x) +A(x) ≤ f(x̄) +A(x̄)).

Definition 2.3. A differentiable function φ : Rn →
R is said to be

(i) invex at u ∈ Rn if there exists an n-
dimensional vector function η : Rn×Rn → Rn

such that ∀ x ∈ Rn,

φ(x)− φ(u) ≥ η(x, u)T∇φ(u).

(ii) quasi-invex at u if there exists an n-
dimensional vector function
η : Rn × Rn → Rn such that∀ x ∈ Rn,

φ(x) ≤ φ(u) =⇒ η(x, u)T∇φ(u) ≤ 0

(iii) pseudoinvex at u if there exists an n-
dimensional vector function

η : Rn × Rn → Rn such that ∀x ∈ Rn ,

η(x, u)T∇φ(u) ≥ 0 =⇒ φ(x) ≥ φ(u)

.

∇φ is the gradient of φ which is taken as n × 1
vector.

Definition 2.4. A functional F : Rn×Rn×Rn → R
is sublinear in its third component, if ∀ x, u ∈ Rn

following holds:

(i) F (x, u, a1 + a2) ≤ F (x, u, a1) +
F (x, u, a2),∀ a1, a2 ∈ Rn.

(ii) F (x, u, αa) = αF (x, u, a), ∀ α ≥ 0, a ∈
Rn, α ∈ R.

Following functions are used to establish higher
order duality. Let h : Rn × Rn → Rl and k : Rn ×
Rn → Rm be differentiable vector valued functions.

Definition 2.5. [13]

(a) (f + (.)Tw, gj) is said to be higher order type I
at u with respect to η if ∀ x, the following holds:
f(x) + xTw − f(u) − uTw =
η(x, u)T [∇ph(u, p) + w] + h(u, p) −
pT∇ph(u, p)
and,
−gj(u) ≥ η(x, u)T∇pkj(u, p) + kj(u, p) −
pT∇pkj(u, p), j = 1, · · · ,m.
where,

(i) xTw =
[
xTw1, · · · , xTwl

]T
, wi ∈

Rn, ∀i.
(ii) η(x, u)T [∇ph(u, p) + w]

= [η(x, u)T (∇ph1(u, p) +
w1), · · · , η(x, u)T (∇phl(u, p) + wl)]

T .

(iii) pT∇ph(u, p) =[
pT∇ph1(u, p), · · · , pT∇phl(u, p)

]T
.

(b) (f + (.)Tw, gj) is said to be higher order
pseudoquasi-type I at u with respect to η if ∀x,
the following holds:

η(x, u)T [∇ph(u, p) + w] =
0
=⇒ f(x) + xTw − f(u) − uTw − h(u, p) +
pT∇ph(u, p) = 0.
and,
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−gj(u) − kj(u, p) +
pT∇pkj(u, p) ≤ 0
=⇒ η(x, u)T (∇pkj(u, p)) ≤ 0, j =
1, 2, . . . ,m

Definition 2.6. Let F : Rn × Rn × Rn −→ R be a
sublinear functional,
ρ1 ∈ Rl, ρ1 = (ρ11, . . . , ρ

1
l )T and ρ2 ∈ Rm, ρ2 =

(ρ21, . . . , ρ
2
m)T and d(., .) : Rn × Rn → R.

(a) (f + (.)Tw, gj) is said to be Higher order (F, ρ)
type I at u if ∀x
f(x) + xTw − f(u) − uTw =
F (x, u,∇ph(u, p) + w) + h(u, p) −
pT∇ph(u, p) + ρ1d2(x, u)
and,
−gj(u) + kj(u, p) − pT∇pkj(u, p) ≥
F (x, u,−∇pkj(u, p)) + ρ2jd

2(x, u), j =
1, 2, . . . ,m.
where F (x, u,∇ph(u, p) + w) denotes the
vector component
(F (x, u,∇ph1(u, p) + w1,
· · · , F (x, u,∇phl(u, p) + wl)

T .

(b) (f + (.)Tw, gj) is said to be higher order
(F, ρ)-pseudoquasi-type I at u , if ∀x

F (x, u,∇ph(u, p) + w) =
−ρ1d2(x, u)
=⇒ f(x) + xTw − f(u) − uTw − h(u, p) +
pT∇ph(u, p) = 0.
and,

−gj(u) − kj(u, p) +
pT∇pkj(u, p) ≤ 0
=⇒ F (x, u,∇pkj(u, p)) ≤
−ρ2jd2(x, u), j = 1, 2, . . . ,m.

For any set B ⊆ Rn, the support function s(x|B)
, being convex and everywhere finite, has a subdif-
ferential, that is, there exists z such that s(y|B) ≥
s(x|B) + zT (y − x) for all y ∈ B . Equivalently,
zTx = s(x|B) . The subdifferential of s(x|B) is
given by ∂s(x|B) := {z ∈ B : zTx = s(x|B)} .
For any set S ⊆ Rn the normal cone to S at a
point x ∈ S is defined by NS(x) := {y ∈ Rn :
yT (z − x) ≤ 0 for all z ∈ S} .
It is readily verified that for a compact convex set
B, y is in NB(x) if and only if s(y|B) = xT y , or
equivalently, x is in the subdifferential of s at y

3 First Order Duality

We now associate the following Mond-Weir Type
dual programming problem (MWD) to (NMP):

Maximize f(u) + uTw (MWD)

subject to ∇(λT f)(u) +
l∑

i=1

λiwi = ∇(yT g)(u),

(1)

yT g(u) ≤ 0, (2)
wi ∈ Di, i = 1, . . . , l,

y ∈ C, λ ≥ 0, λT e = 1,

where

(i) e = (1, . . . , 1)T ∈ Rl,

(ii) uTw = [uTw1, . . . , u
Twl]

T .

Remark 3.1. In comparison to dual proposed in [7]
, first constraint is slightly change to ensure that
vectors on both the sides of equality are compara-
ble.Also, the second constraint in[7] is taken as:
yT g(u) ∈ C∗

2 and x ∈ C1 where C1 and C2 are
closed convex cones. However, with these conditions
strong duality does not hold as [λ

T
(∇f(x) + w) −

yT∇g(x)]Tx = 0 , for all x ∈ C1 ,
; λ

T
(∇f(x) + w) − yT∇g(x) = 0. Moreover,

yT g(x) 5 0 ; g(x) ∈ C∗
2 . Therefore, the above

model was considered and duality results were es-
tablished.

Theorem 3.1. (Weak Duality):
Let x and (u, y, λ, w1, w2 · · · , wl) be the feasible so-
lutions of (NMP) and (MWD), respectively. Assume
that one of the following holds:

(a) fi(.) + (.)Twi, i ∈ {1, 2, · · · , l} and −yT g(.)
is invex at u with respect to same η.

(b)
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi is pseudoinvex at u

and −yT g(.) is quasi-invex at u with respect to
the same η.

Then,
f(x) +A(x) ≮ f(u) + uTw

3
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Proof. Assume on contrary that
f(x) +A(x) < f(u) + uTw
=⇒ fi(x) + s(x | Di) < fi(u) + uTwi, ∀i.
Multiplying above equations by corresponding λi,
for each i and adding them, we get

l∑
i=1

λi(fi(x) + s(x | Di)) <

l∑
i=1

λifi(u) + uT
l∑

i=1

λiwi. (3)

(a) Suppose fi(.) + (.)Twi, i ∈ {1, 2, · · · , l} and
−yT g(.) is invex at u.
Then,

fi(x) + xTwi − fi(u)− uTwi ≥
η(x, u)T (∇fi(u) + wi), ∀i (4)

−yT g(x) + yT g(u) ≥
η(x, u)T∇(−yT g)(u). (5)

Multiplying (4) for each i, by λi and adding, we
get

l∑
i=1

λifi(x) + xT
l∑

i=1

λiwi

−
l∑

i=1

λifi(u)− uT
l∑

i=1

λiwi ≥

η(x, u)T

(
l∑

i=1

λi∇fi(u) +
l∑

i=1

λiwi

)
(6)

Adding (5) and (6), we get
l∑

i=1

λifi(x) + xT
l∑

i=1

λiwi − yT g(x)

−
l∑

i=1

λifi(u) − uT
l∑

i=1

λiwi + yT g(u) ≥

η(x, u)T(
l∑

i=1

λi∇fi(u) +
l∑

i=1

λiwi −∇(yT g)(u)

)

Using (1), (2) and the fact −g(x) ∈ C∗, it fol-

lows that

l∑
i=1

λifi(x)+xT
l∑

i=1

λiwi−
l∑

i=1

λifi(u)−uT
l∑

i=1

λiwi ≥ 0.

Since,

s(x | Di) ≥ xTwi, ∀ i, (7)

we get,
l∑

i=1

λi(fi(x) + s(x | Di)) ≥
l∑

i=1

λifi(u) +

uT
l∑

i=1

λiwi, which contradicts (3).

Hence f(x) +A(x) ≮ f(u) + uTw.

(b) Suppose
l∑

i=1

λifi(.)+(.)T
l∑

i=1

λiwi is pseudoin-

vex and −yT g(.) is quasi-invex at u. Using (7)
,(3) implies that
l∑

i=1

λifi(x) + xT
l∑

i=1

λiwi <
l∑

i=1

λifi(u) +

uT
l∑

i=1

λiwi.

Since
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi is a real

valued pesudoinvex function at u, therefore,

η(x, u)T

[
∇(λT f)(u) +

l∑
i=1

λiwi

]
< 0

From (1), we have η(x, u)T (∇(yT g)(u)) < 0.
=⇒ η(x, u)T (∇(−yT g)(u)) > 0.
By quasi-invexity of −yT g(.), we get

−yT g(x) > −yT g(u) (8)

From (2) and −g(x) ∈ C∗, we obtain,
−yT g(x) ≤ −yT g(u) which contradicts (8) .
Hence f(x) +A(x) ≮ f(u) + uTw.

In order to prove strong duality we need the follow-
ing lemma ([2], [15], [10]).

4
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Lemma 3.1. If x is a weakly efficient solution ( resp.
efficient) of (NMP) at which generalized Slater con-
straint qualification is satisfied. Then there exist
wi ∈ Di, i ∈ {1, 2, · · · , l}, λ̄ ≥ 0 (resp.λ̄ > 0) and
ȳ ∈ C such that

(λ̄T∇f(x̄) +
l∑

i=1

λ̄iw̄i
T − ȳT∇g(x̄))

(x− x̄) ≥ 0, ∀x ∈ Rn

ȳT g(x̄) = 0,
s(x̄ | Di) = x̄T w̄i, i ∈ 1, 2 · · · , l.

Theorem 3.2. (Strong Duality):
If x̄ is a weakly efficient solution of (NMP) at which
generalized Slater constraint qualification holds.
Then there exist λ̄ ≥ 0, ȳ ∈ C and w̄i ∈ Di{i =
1, 2 · · · , l} such that (x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l) is
feasible for (MWD) and the corresponding val-
ues of (NMP) and (MWD) are equal. If the
assumptions of the Theorem 3.1 are satisfied,
then (x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l) is weakly efficient for
(MWD).

Proof. Since x̄ is a weakly efficient solu-
tion of (NMP), by Lemma 3.1 there exist
w̄i ∈ Di, i ∈ {1, 2, · · · , l}, λ̄ ≥ 0 and ȳ ∈ C
such that

[
l∑

i=1

λ̄i(∇fi(x̄)T + w̄i
T )− ȳT∇g(x̄)

]
(x− x̄) ≥ 0, ∀x ∈ Rn, (9)

ȳT g(x̄) = 0, (10)
s(x̄ | Di) = x̄T w̄i i ∈ {1, · · · , l}, (11)

λ̄ ≥ 0, λ̄T e = 1.

Since 〈u, v〉 ≥ 0,∀ v ∈ Rn implies u = 0.
Therefore (9) implies,[

l∑
i=1

λ̄i(∇fi(x̄)T + w̄i
T )− ȳT∇g(x̄)

]
=

0

that is,

[
l∑

i=1

λ̄i(∇fi(x̄) + w̄i)−∇g(x̄)T ȳ

]
= 0.

Now,

∇g(x̄)T ȳ =
m∑
i=1

ȳi∇gi(x̄)

= ∇

(
m∑
i=1

ȳigi(x̄)

)
= ∇(ȳT g)(x̄).

Therefore,∇(λ̄T f)(x̄) +
l∑

i=1

λ̄iw̄i = ∇(ȳT g)(x̄).

Thus from (10) we get (x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l) is
feasible for (MWD).
Using (11), the objective function value of (NMP) is

f(x̄) +A(x̄) = f(x̄) + (s(x̄ | D1), · · · , s(x̄ | Dl))
T

= f(x̄) +
(
x̄T w̄1, · · · , x̄T w̄l

)T
= f(x̄) + x̄T w̄.

where, f(x̄)+ x̄T w̄ is the objective function value of
(MWD).
Hence, the corresponding values of (NMP) and
(MWD) are equal.
Let the assumptions of Theorem 3.1 hold and assume
on contrary that
(x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l) is not weakly efficient for
(MWD). Then, there exists a feasible solution of
(MWD) say (x̂, ŷ, λ̂, ŵ1, ŵ2, · · · , ŵl), such that

f(x̂) + x̂T ŵ > f(x̄) + x̄T w̄

= f(x̄) +A(x̄)

which contradicts Weak Duality 3.1. There-
fore, (x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l) is weakly efficient for
(MWD).

4 Higher Order Duality

In this section, we formulate higher order duals to
(NMP) which have great computational advantage
over the first order duals. Throughout the section
η(., .) is a vector valued function taking values inRn.
We propose the following Mond-Weir higher order

5

Paper ID: 02014277 780

International Journal of Science and Research (IJSR)

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

www.ijsr.net

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014



multiobjective dual problem (MMCD) to (NMP):

Maximize f(u) + uTw + (λTh)(u, p)e

−(pT∇p(λTh)(u, p))e
(MMCD)

subject to ∇p(λTh)(u, p)

+
l∑

i=1

λiwi = ∇p(yT k)(u, p), (12)

yT (g(u) + k(u, p)− pT∇pk(u, p)) ≤ 0, (13)
wi ∈ Di, i = 1, . . . , l,

y ∈ C, λ > 0, λT e = 1.

where

(i) e = (1, . . . , 1)T ∈ Rl,

(ii) uTw = [uTw1, . . . , u
Twl]

T .

(iii) h : Rn × Rn −→ Rl and
k : Rn × Rn −→ Rm are differentiable func-
tions with ∇phj(u, p) and ∇p(yT k)(u, p) as
the n × 1 gradient of hj and yT k with respect
to p, respectively.

(iv) pT∇pk(u, p) denotes the vector[
pT∇pk1(u, p), · · · , pT∇pkm(u, p)

]T
.

Remark 4.1. Again, in comparison to dual proposed
in [8], first constraint is slightly change to ensure
that vectors on both the sides of equality are compa-
rable.Also, the second constraint in [8] is taken as:
g(u) + k(u, p) − pT k(u, p) ∈ C∗

2 and x ∈ C1

where C1 and C2 are closed convex cones. However,
with these conditions strong duality does not hold as
[λ

T
(∇f(x)+w)−yT∇g(x)]Tx = 0 , for all x ∈ C1

,
; λ

T
(∇f(x) + w) − yT∇g(x) = 0. Moreover,

yT g(x) 5 0 ; g(x) ∈ C∗
2 . Therefore, the above

model was considered and duality results were es-
tablished.

Weak and strong duality theorems are proved be-
low.

Theorem 4.1. (Weak Duality):
Let x and (u, y, λ, w1, · · · , wl, p) be feasible solu-
tions of (NMP)and (MMCD) respectively. Assume
that one of the following holds:

(a)

(
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi,−yT g(.)

)
is

higher order pseudoquasi-type I at u.

(b)

(
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi,−yT g(.)

)
is

higher order (F, ρ) type I at u with
ρ1 + ρ2 ≥ 0.

(c)

(
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi,−yT g(.)

)
is

higher order (F, ρ)-pseudoquasi-type I at u with
ρ1 + ρ2 ≥ 0.

Then,
f(x) + A(x) � f(u) + uTw + (λTh)(u, p)e −
(pT∇p(λTh)(u, p))e.

Remark 4.2. The functions in above conditions are
all real-valued functions defined onRn, therefore the
inequalities in Definitions 2.5 and 2.6 reduce to gen-
eral ordering in R. Also, ρ1 and ρ2 involved are not
vectors inRl andRm respectively but mere real num-
bers.

Proof. Assume to the contrary that
f(x) + A(x) ≤ f(u) + uTw + (λTh)(u, p)e −
(pT∇p(λTh)(u, p))e.
=⇒
fi(x) + s(x | Di) ≤ fi(u) + uTwi + λTh(u, p) −
pT∇p(λTh)(u, p),∀ i ∈ {1, · · · , l}
and
fr(x) + s(x | Dr) < fr(u) + uTwr + λTh(u, p)−
pT∇p(λTh)(u, p), for atleast one r ∈ {1, · · · , l}.
Multiplying each of the above equations with
corresponding λi and summing up, we get

l∑
i=1

λi(fi(x) + s(x | Di)) <

l∑
i=1

λifi(u) + uT
l∑

i=1

λiwi

+λTh(u, p)− pT∇p(λTh)(u, p). (14)

(a) Suppose

(
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi,−yT g(.)

)
is higher order pseudoquasi-type I at u.

6
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By (13), we have
−(−yT g(u)) − (−yT k(u, p)) +
pT∇p(−(yT k)(u, p)) ≤ 0.
=⇒ η(x, u)T

[
∇p(−(yT k)(u, p))

]
≤ 0.

=⇒ η(x, u)T
[
∇p(yT k)(u, p)

]
≥ 0.

Using (12), we get

η(x, u)T

[
∇p(λTh)(u, p) +

l∑
i=1

λiwi

]
≥ 0.

=⇒
l∑

i=1

λifi(x) +xT
l∑

i=1

λiwi−
l∑

i=1

λifi(u)−

uT
l∑

i=1

λiwi−

λTh(u, p) + pT∇p(λTh)(u, p) ≥ 0
Using (7) and rearranging the terms , we have
l∑

i=1

λi(fi(x) + s(x | Di)) ≥
l∑

i=1

λifi(u) +

uT
l∑

i=1

λiwi+

λTh(u, p)− pT∇p(λTh)(u, p)
which contradicts (14)
Hence f(x) + A(x) � f(u) + uTw +
(λTh)(u, p)e− (pT∇p(λTh)(u, p))e.

(b) Suppose

(
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi,−yT g(.)

)
is higher order (F, ρ) type I at u with ρ1+ρ2 ≥ 0.

=⇒
l∑

i=1

λifi(x) +xT
l∑

i=1

λiwi−
l∑

i=1

λifi(u)−

uT
l∑

i=1

λiwi ≥

F (x, u,∇p(λTh)(u, p) +
l∑

i=1

λiwi) + λTh(u, p) − pT∇p(λTh)(u, p) +

ρ1d2(x, u).
and
−(−yT g(u))+yT k(u, p)−pT∇p(yT k)(u, p) ≥
F (x, u,−∇p(yT k)(u, p)) + ρ2d2(x, u).
Adding above two inequalities and using sublin-
earity of F , we get
l∑

i=1

λifi(x) + xT
l∑

i=1

λiwi −
l∑

i=1

λifi(u) −

uT
l∑

i=1

λiwi−λTh(u, p)+pT∇p(λTh)(u, p)−

[−yT g(u)− yT k(u, p) + pT∇p(yT k)(u, p)]

≥ F (x, u,∇p(λTh)(u, p) +
l∑

i=1

λiwi) +

F (x, u,−∇p(yT k)(u, p)) + (ρ1 + ρ2)d2(x, u)

≥ F (x, u,∇p(λTh)(u, p) +
l∑

i=1

λiwi −

∇p(yT k)(u, p)) + (ρ1 + ρ2)d2(x, u)
≥ 0, because (12) holds.
From (13), we obtain
yT
[
g(u) + k(u, p)− pT∇pk(u, p)

]
≤ 0.

=⇒
l∑

i=1

λifi(x) + xT
l∑

i=1

λiwi −
l∑

i=1

λifi(u) −

uT
l∑

i=1

λiwi − λTh(u, p) + pT∇p(λTh)(u, p)

≥ −yT g(u) − yT k(u, p) +
pT∇p((yT k)(u, p))

≥ 0.
Again, using (7) we get,
l∑

i=1

λi(fi(x) + s(x | Di)) ≥
l∑

i=1

λifi(u) +

uT
l∑

i=1

λiwi + λTh(u, p)− pT∇p(λTh)(u, p).

which contradicts (14)
Hence f(x) + A(x) � f(u) + uTw +
(λTh)(u, p)e− (pT∇p(λTh)(u, p))e.

(c) Suppose

(
l∑

i=1

λifi(.) + (.)T
l∑

i=1

λiwi,−yT g(.)

)
is higher order (F, ρ)-pseudoquasi-type I at u
with ρ1 + ρ2 ≥ 0.
Using (7), (14) implies
l∑

i=1

λifi(x) + xT
l∑

i=1

λiwi <

l∑
i=1

λifi(u) +

uT
l∑

i=1

λiwi + λTh(u, p)− pT∇p(λTh)(u, p).

=⇒
l∑

i=1

λifi(x) +xT
l∑

i=1

λiwi−
l∑

i=1

λifi(u)−
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uT
l∑

i=1

λiwi − λTh(u, p)+

pT∇p(λTh)(u, p) < 0.
By the given hypothesis, we get

F (x, u,∇p(λTh)(u, p) +
l∑

i=1

λiwi)

< −ρ1d2(x, u) (15)

From (13), we get
−(−yT g)(u) − (−yT k(u, p)) +
pT∇p(−(yT k)(u, p)) ≤ 0

=⇒ F (x, u,∇p(−(yT k)(u, p)))

≤ −ρ2d2(x, u) (16)

Using sublinearity of F , (15) and (16) we get
F (x, u,∇p(λTh)(u, p) − (yT k)(u, p)) +
l∑

i=1

λiwi) < −(ρ1 + ρ2)d2(x, u).

Since ρ1 + ρ2 ≥ 0 and d2(x, u) ≥ 0, therefore
−(ρ1 + ρ2)d2(x, u) ≤ 0.
=⇒ F (x, u,∇p(λTh)(u, p) − (yT k)(u, p)) +
l∑

i=1

λiwi) < 0, which contradicts (13).

Hence f(x) + A(x) � f(u) + uTw +
λTh(u, p)e− (pT∇p(λTh)(u, p))e.

Theorem 4.2. (Strong duality):
If x̄ is an efficient solution of (NMP) at which
generalized Slater constraint qualification is satis-
fied. Let h(x̄, 0) = k(x̄, 0) = 0,∇ph(x̄, 0) =
∇f(x̄) and ∇pk(x̄, 0) = ∇g(x̄). Then there ex-
ist λ̄ > 0, ȳ ∈ C and w̄i ∈ Di{i = 1, 2 · · · , l}
such that (x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l, p̄ = 0) is fea-
sible for (MMCD) and the corresponding values
of (NMP) and (MMCD) are equal. If the as-
sumptions of the Theorem 4.1 are satisfied, then
(x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l, p̄ = 0) is efficient for
(MMCD).

Proof. Since x̄ is an efficient solution of (NMP),
therefore by Lemma 3.1, there exist λ̄ > 0, ȳ ∈ C
and w̄i ∈ Di{i = 1, 2 · · · , l} such that (9), (10) and

(11) holds.
As done in Theorem 3.2, we get
l∑

i=1

λ̄i (∇fi(x̄) + w̄i) = ∇ȳT g(x̄).

From the given hypothesis, we get

∇p(λ̄Th)(x̄, 0) +
l∑

i=1

λ̄iw̄i = ∇p(ȳT k)(x̄, 0)

From (10), we have
ȳT [g(x̄) + k(x̄, 0)− 0] = ȳT g(x̄) = 0.
Hence,(x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l, p̄ = 0) is feasible
for (MMCD).
Since p̄ = 0, h(x̄, 0) = 0 and (11) holds, the
objective function value of (MMCD) is

f(x̄) + x̄T w̄ + (λ̄Th)(x̄, 0)e− p̄T∇p(λ̄Th)(x̄, 0)e = f(x̄) + x̄T w̄

= f(x̄) +
[
x̄T w̄1, · · · , x̄T w̄l

]T
= f(x̄) + [s(x̄ | D1), · · · , s(x̄ | Dl)]

T

where f(x̄) + [s(x̄ | D1), · · · , s(x̄ | Dl)]
T is the

objective function value of (NMP).
Suppose that the assumptions of Theorem 4.1 are
satisfied but on contrary
(x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l, p̄ = 0) is not an efficient
solution of (MMCD). Then there exists a feasible
solution (x̂, ŷ, λ̂, ŵ1, ŵ2, · · · , ŵl, p̂), to (MMCD)
such that

f(û)+ûT ŵ+(λ̂Th)(û, p̂)e−(p̂T∇p(λ̂Th)(û, p̂))e ≥ f(x̄)+x̄T w̄

where f(x̄) + x̄T w̄ is the objective function value
of (NMP) which is a contradiction to Weak Duality
Theorem 4.1 .
Hence, (x̄, ȳ, λ̄, w̄1, w̄2, · · · , w̄l, p̄ = 0) is an effi-
cient solution of (MMCD).

Remark 4.3. Throughout the above section we are
using

yT pT∇pk(u, p) = pT∇p(yT k)(u, p)

which is evident from our set notations.

5 Conclusion

In this paper, the main focus was to give the mod-
ified (corrected) versions of Mond-Weir type duals
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and established duality results. Wolfe type duals dis-
cussed in [7],[8] can be slightly modified to ensure
vectors under consideration are comparable. This pa-
per provides a base for studying unified first order
and higher order dual for (NMP). Unified dual pro-
vides a common platform to study both Wolfe type
as well as Mond-Weir type duals. For Unified dual
considered in [1] strong duality does not hold.

Author Profile: Priyanka Yadav is a research
scholar in Department of Mathematics at University
of Delhi- 110007, India.
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