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Abstract: Data mining and efficient knowledge discovery in database have been attracting a significant amount of research, industry 
attention in mostly all the fields. The paper discusses about “Bug prediction”: an essential phase in the process of bug triaging and 
fixing process. Bug prediction solutions have been proposed. The demonstration of their effectiveness however faces number of issues 
including bug triaging, inappropriate evaluation measures: likelihood, precision and recall values. The major drawback of bug 
prediction technique is unsatisfactory prediction resulting in least accuracy and conspicuous bug report. With the new advancement, 
machine learning classifiers have proved and emerged as a trusted way to predict the introduction of bugs in changes made to sources. 
The demerits of existing classifier based prediction techniques are insufficient data and slow performance. The objective is to reach 
optimal classification performance with naïve bayes accompanied with svm (support vector machine) classifiers and substantial feature 
extraction, further analyzing its performance on the basis of its evaluation measures-“likelihood, precision and recall value, f- 
measure”. The evaluation result show that proposed approach can achieve better search results than existing search programs .the
work will help in precise and relevant prediction of bug reports and will help in diagnostics of mislabeling of bug reports. 
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1. Introduction 

Identifying software faults in an effective manner is a crucial 
process since corrective maintenance costs increase 
exponentially if the faults are detected later in the software 
development life cycle [5]. Predictive models have been 
used to predict newly reported bugs by assigning priority of 
each bug. Bug tracking repositories like Bugzilla and others 
are used for monitoring and managing the software systems. 
In bug tracking system, record of different features about the 
bugs, such as when the bugs was reported and in which 
component are maintained. Work regarding software 
maintenance [1, 13] and evolution [12] often require 
information on both the bugs that are reported and the fixes 
that developers applied. Therefore, open source software 
systems receive abundant rate of bug reports daily. Also, bug 
triaging, the process of assigning bugs to a developer, is a 
labor-intensive, time-consuming and fault prone if done 
manually. Many a time’s security reports are mislabeled and 
managing them consumes lots of time. 

Databases with hundreds of fields and tables and millions of 
records and multi gigabyte size were commonplace and tera 
byte database came to use from last few years. Low noise 
data i.e. few data errors are another consideration and 
“accessing of statistical significance”: problem occurred 
when the system is searching over many problems at a time. 
A key finding to the software testing is the fact that faults 
tends to cluster; i.e. to be contained in a limited number of 
software modules [11]. This strongly motivates the use of 
software fault prediction models which provide an sure and 
considerable indication whether the source is likely to 
contain faults i.e. to construct such prediction model that 
timely indicates fault segments or fault report, a number of 
solution have been proposed. 

Previous work formulated the problem as a classification 
task that automatically suggested the files where a bug was 
almost likely to be fixed. Based on its bug report’s content. 
They build predictive model that extracted features with 
actual fix locations and also trained a prediction model that 
later predicts the fix location for a new bug report or say 
small number of bug reports. Classification technique 
implemented is naïve bayes. This approach suffered from the 
demerit that only predictable reports were considered and 
deficient reports were avoided at the first step. And also this 
was the reason to lower its evaluation measures. In this 
paper the goal is to improve the prediction accuracy along 
with its evaluation measures. Before, the algorithm only 
concentrated on the best parameter for one particular model 
using a limited set of data. It is termed as “over fitting” .It 
used to model only the general patterns in the data and noise 
specific to the data set, resulting in poor performance of the 
model at the time of testing data. This called the need of 
cross validation, regularization and other sophisticated 
statistical strategies.  

To summarize, we make the following key contribution in 
this paper: 
1. We reach much higher prediction accuracy compared to 

other classification based bug prediction, fix and triaging 
methods by: 
 Using features of bug reports other than the textual data. 

Besides the normal bug description used in prior work, 
we incorporated more features like the component in 
which bug belongs to. 

 Most importantly, we have considered both security bug 
reports and non security bug reports considering 
statistical bug track and evaluated the result in first 
module using each reports probability separately. This 
helps in the wise evaluation of result. 

We perform experimental evaluation using bug reports 
datasets obtained from real projects. We used larger datasets 
compared to previous work. The experimental results show 
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that building a classifier model using the different feature. 
Our evaluation shows the effectiveness of the two phase 
predictor over the other models and suggests tangible 
benefits when deploy. 

Figure 1: shows the applications to manage database in 
various department. 

2. The traditional method of turning data into data into 
knowledge relied on manual analysis & interpretation & 
faced many faults. The need of software maintenance and 
efficiency arises because it is important in every field 
such as: 
 Health care: common need for specialist to periodically 

analyze current trends and change in health care. In this 
case efficiency plays an important role. 

 Marketing: The primary application in database 
marketing system which analyze customer database to 
identify customer groups and forecasts their behavior. 
Thereby, fraud detection showed its importance in this 
field too to achieve customers satisfaction and security. 

Likewise in every field where knowledge discovery and data 
access is used, data cleaning and fault prediction is also 
required in them. The rest of the paper is organized as 
follows: section2 describes the related work and section 3 
describes proposed approach. The experimental evaluation 
and fault measure validation are presented in section 
4.Section 5 discusses threats to validity and section 6 
concludes the paper. 

2. Related work  

Many approaches adopted both machine learning and 
information retrieval techniques to improve the bug triaging 
process. Cubranic et al.[4] were the first to use a text 
classification approach to automatically assign bug reports to 
developers. Anvik et al. [6] [7] improved the approach 
proposed by Cubranic et al. by removing inactive 
developers. By inactive developers here, we mean that 
developers with a too low bug fixing frequency or 
developers those who are not working on the project 
anymore. They employed SVM, Naïve Bayes and Decision 
Trees classification techniques, and reported prediction 
accuracy of up to 64%.Several approaches were proposed in 
order to enhance bug assignment accuracy. Park et al.[8] 

proposed a bug triaging approach. Their approach 
incorporated collaborative filtering recommender and topic 
modeling to improve bug prediction and triaging, reduce the 
sparseness of training data. Zou et al. [13] proposed the 
training set reduction with both feature selection and 
instance selection technique for bug triage. Alenezi et al. 
employed five state-of-the art term selection methods on the 
textual description of bug reports to produce discriminating 
terms. After that they built a classification model on the 
discriminating terms using Naïve Bayes classifier. 

Let us discuss here about assignment automation 
.assignment automation is to lighten the load for a triager by 
recommending, for a given bug report [7], who might be 
appropriate for it and address all the problems accurately. To 
date, two predominant types of approaches have emerged: 
(1) Machine learning techniques and 
(2) Statistical analysis techniques of bug tossing graphs. 

In the first approach, features such as keywords and 
metadata are extracted from past bug reports and, together 
with data linking these bug reports to developers who then 
fixed them, used to train a machine learning model [7]. 
Several other studies refine the pure machine learning 
approach like Latent Dirichlet Allocation to categorize bug 
reports [9], leveraging fuzzy set-based modeling to automate 
developer tasks [3], or processing of source code authorship 
information to recommend developers [10]. In the second 
type of approach efficient statistical analysis is the major 
part if it is attained. This approach relies on statistical 
analysis of bug tossing graph. A bug tossing graph captures 
the history of bug report reassignment from developer to 
developer, and uses it as a source for a statistical analysis 
that aims to detect repeated pattern. 

2.1 Classifier Used

Bayesian Network Classifier 

Naïve Bayes Classifier: A naïve bayes classifier is a simple 
probabilistic classifier based on applying Bayes’ theorem 
(from Bayesian statistics) with strong (naïve) independence 
assumptions. A more descriptive term for the underlying 
probability model would be “independent feature model”. 

In simple terms, a naïve bayes classifier assumes that the 
presence (or absence) of a particular feature of a class is 
unrelated to the presence (or absence) of any other feature 
[12]. For example, a fruit may be considered to be an apple 
if it is red, round and about 4 inches in diameter. Even if 
these features depend on each other or upon the existence of 
the other features, a naïve bayes classifier considers all of 
these properties to independently contribute to the 
probability that this fruit is an apple. Depending on the 
precise nature of the model naïve bayes classifier, it can be 
trained efficiently in a supervised state. Also, in many 
practical applications, parameter estimation for naïve bayes 
models uses the method of likelihood; if we elaborate in 
simple words, one can work with the naïve bayes model 
without believing in Bayesian probability or using any 
Bayesian methods [4]. In spite of their naïve design and 
apparently over simplified assumptions, naïve bayes 
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classifiers have worked quite well in many complex real-
world situations. 

The Naive Bayes Probabilistic Model: The probability 
model for a classifier is a conditional model P(c|f1….fn) over 
a dependent class variable with a small number of outcomes 
or classes, conditional on several feature variables f1 through 
fn.

Support Vector Machine: Support Vector Machines 
(SVM’S) are relatively new learning method used for binary 
classification. SVM’s introduce the notion of a kernel 
induced feature space which cast the data into higher 
dimensional space where the data is separable [11]. 
Furthermore, the VC-dimension (a measure of a system’s 
likelihood to perform well on unseen data) of SVM can be 
explicitly calculated. Overall, SVM’S are intuitive, 
theoretically well-founded and have shown to be practically 
successful. SVM’s have also trained to solve regression 
tasks (where the system is trained to output a numerical 
value, rather than \yes/no’’ classification) finding the 
optimal curve to the data is difficult and it would be not a 
intelligent decision to use the method of finding the optimal 
hyper plane. The process is to pre-process the data in such a 
way that the problem is transformed into one of finding a 
simple hyper plane. 

Natural Language Processing: Natural language presents 
significant opportunities for mining in free form text, 
especially for automated annotation and indexing prior to 
classification of text corpora limited parsing capabilities can 
help substantially in the task of deciding what an article 
refers to. Hence, the spectrum from simple natural language 
processing all the way to language understanding can help 
substantially. Also natural language processing can 
contribute significantly as effective interface for stating hints 
to mining algorithms and visualization in explaining 
knowledge derived. 

3. Proposed Approach 

We propose machine learning approach to predict buggy 
files to fix from the given bug reports. 

3.1 Feature Extraction 

A bug report is the main source of information for 
developers to understand to understand a bug i.e. the bug 
summary briefly describes the bug while the initial 
description it in detail, metadata provides bug’s basic 
information such as version and comments record 
discussions from bug reporters and developers. As the 
approach uses machine learning classification. The complete 
process contains the following major steps: 

1) Bug Representation: The bug reports are collected and 
the collections of bug reports are represented and 
grouped together to form a master bug report. This 
master report would be useful ahead for the ongoing 
process. 

2) Query Formulation: Now, for further processing of the 
model, the short description and the keywords of the 
master bug report are combined to one query. Note that 

every description should be valid. The short description 
of the report includes summary, initial description and 
metadata (OS, priority, status and reporter). 

3) Relevance Labeling: we decided labels or grade 
according to the status in the training data that either it is 
resolved, new, unresolved, verified or unconfirmed. The 
top k reports that are verified are given the resolution 
fixed and also there are reports that carry a resolution 
grade: duplicate, invalid and others. Each report is also 
assigned a category of non security bug report (NSBR) 
and security bug report (SBR). 

4) Feature Vector Generation: As our approach uses 
machine learning classification, we transformed a bug 
report into a feature vector. 

The queries and textual bug reports require the following 
preprocessing steps: 
1) Word regularization: All letters are lowercased. Words 

are segmented by standard whitespace characters. 
2) Word stemming: Stemming is a commonly used 

technique to normalize words with the same root by 
removing their suffixes. For e.g.: compute is the stem of 
computes, computing and computed. 

3) Word splitting: in bug reports, there is much source code 
mixed in the text.  

4) Stop words removal: stop words are those words that do 
not contribute an actual semantic meaning, such as the 
prepositions. We remove the stop words, according to the 
stop word list. 

After the whole process was executed, stop words from the 
summary will be removed .It also showed the frequency of 
an alphabet occurring maximum times. 

Figure 2: Showing the process of pre-pre-processed new 
loaded data with precision and recall value of bug reports 

with respect to values of SBR and NSBR. 

Figure 3: showing the frequency of the words occurrence as 
frequent item. Here S has the maximum frequency of 

occurring as a frequent item. 
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3.2 Data Preprocessing 

A first important step in each data mining exercise is 
preprocessing the data. Bug reports are unstructured data 
which contain irrelevant terms .Therefore, it becomes 
necessary to apply the traditional text processing approach to 
transform the text data into a meaningful representation. 
After the stop words removal, the approach constructs a bug 
term matrix frequency. After that a filtering is performed to 
refine the training set further to remove reports that are 
assigned to inactive developers or reports that do not have 
sufficient words to describe themselves as meaningful 
information. Each observation (software module or file) in 
the data sets consists of unique ID, several static features and 
an error count with error description. Naive Bayes classifier 
is used to build the predictive model. Although it is known 
for its simplicity, it is well suited to our problem. The Naïve 
Bayes algorithm has been found to perform astonishingly 
well in information retrieval. In the existing work, precision 
values were not getting merge and likelihood was also not 
accurate. In the proposed work, after the stop words 
removal, we will get a frequency of the words i.e. 
occurrence of each word as a frequent item. Next we will 
calculate the recall and likelihood in the summary. It showed 
show that if we bug track words individually then the 
resulting precision and likelihood is high and iterations are 
low. So when we do it by implementing on summary 
through NLP (Natural Language Processing) taking it 
towards SVM (Support Vector Machine), likelihood can be 
reduced. 

Taking this model to a statistical and probabilistic approach, 
it allows us to capture uncertainty about the model i.e. in a 
principle way by determining probabilities of the outcomes. 
We aim to solve diagnostic and predictive problem. After 
the mining process is been finished, the resultant file is been 
saved in an attribute relationship file format. This is been 
read as the test set file for each source file. The major 
problem is of mislabeling of SBR (secure bug reports) as 
NSBR (non secure bug reports) that causes serious damage 
to software systems stakeholders sometimes due to delay of 
identifying and fixing the involved security bug. Therefore 
we calculated the probability in terms of security bug reports 
and non security bug reports separately and their precision 
and recall value.  

Figure 4: shows the count of each processed word after 
stemming each attribute individually with recall and 

likelihood. 

4. Fault Measure Validation 

To quantitatively evaluate a bug tracking approach, we 
propose to use standards metrics from the field of 
information retrieval, namely Likelihood, Precision, Recall, 
And F-measure metrics.
 Likelihood measures the accuracy of prediction results. 

This is an effective measure to evaluate recommendation 
techniques. We consider the prediction results to be 
correct if at least one of the recommended k files matches 
one of the actual source or patch files for a given bug 
report. If none of the recommended files matches, the 
prediction is correct. We denote the number of bug reports 
as NC. If the addressing prediction is correct, NIC if 
prediction is incorrect. The following formula computes 
the percentage of bug reports for which the prediction is 
correct:
Likelihood = NC  (NC + NIC)

 Precision characterizes the number of correctly predicted 
files over the number of files recommended by our 
approach. We denote the set of genuine files fixed for a 
bug report as FB and the set of recommended files for 
diagnostics as FR:

Precision = | FB  FR |  | FR |
 Recall characterizes the number of correctly predicted 

files over the number of actual fixed files: 
Recall =| FB  FR |  | FB

 F1 score is a measure of test’s accuracy in statistics. It 
considers both the precision p and the recall r of the test to 
compute the score: p is the number of correct results 
divided by the number of all returned results and r is the 
number of correct results divided by the number of results 
that should have been returned. 
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F1=2. Precision. Recall  Precision + Recall) 

The F1 score can be interpreted as a weighted average of the 
precision and recall, where an F1 score reaches its best score 
at 1 and worst score at 0. 

4.1 Research Questions and Metrics 

 Question 1: which variable lead to best bug prediction 
when using feature selection? 
The three main variables affect bug prediction 
performance that are discussed in this paper: 1) type of 
classifier (Naïve Bayes, Support Vector Machine), 2) 
process of feature extraction, and 3) whether multiple 
instances of a particular feature are significant i.e. in terms 
of count or whether only the existence of a feature is 
significant (binary).In this approach feature selection is 
performed, followed by computation per project accuracy 
.once all projects are complete, average values across all 
projects are computed. Every result in the table reports the 
standard deviation. 

 Question 2: what is the sensitivity of the tool when 
training data is changed?  
Advanced techniques for diagnostic of data with the tool, 
use machine learning algorithms that rely on training data 
for computing the similarity thresholds for detection of 
bug links. Variations in real-world datasets may therefore 
impact the performance of such bug linking tools. 
Consequently, for a bug linking tool that relies on machine 
learning approaches, it is important to consider and 
investigate its sensitivity when data is trained and triaged. 

 Question3: How is the proposed approach in terms of time 
efficiency? 
We, examined the efficiency of the proposed approach in 
terms of training time against different sizes of the training 
set, i.e. the numbers of pairs used for training the Naïve 
Bayes model and how much time effective is it to 
implement on a summary through SVM after being trained 
to reduce likelihood and get good results. 

5. Threats to Validity 

There are potential threats to the validity of our work. Like 
other data mining research work, our conclusions could be 
biased by the type of data that were used. To validate our 
approach, we perform evaluations on reports collected from 
popular, large – scale open source systems. Choosing reports 
from open source community was intentionally done 
because they are high quality reports and extraction of data 
from them could be the efficient one. Some may consider 
evaluation method as biased; we laid emphasis on measuring 
the prediction accuracy using likelihood, which considers 
the prediction to be correct if at least one of the 
recommended files matches the actual patch file. However 
the relative improvement using the classifier the extraction 
techniques cannot be ignored.  

6. Conclusions and Future Work 

Time and cost effective software development are decisive 
for today’s developers, several approaches to tackle the 
problem of software bugs have been investigated. Software 
bug prediction can be regarded as just one piece of the 
solution to these issues. We computed prediction in a series 
of training and processing datasets. In our work we provide a 
clean open source datasets for bug diagnostics. The results 
showed that overall approach received very good precision, 
for maximum number of source files i.e. over 90%, for some 
programs, but delivers little lesser recall rates. The f- 
measure results proved to be improved but also showed there 
is room for improvement in the area of bug linking. Now, if 
we talk about misclassifying a faulty instance, then our 
findings indicate it to be the appropriate approach to solve 
this problem. Using Bayesian network learners, into these 
different information sources could be gained which is still a 
topic left for future research and efficient bug linking 
approach should be worked upon to solve the problem of 
software teams and save time. 
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