
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Towards The Roadmap of Defect Predictors & Its
Diagnostics

Shubha Sharma1, Anubhooti Papola2

1Master of Technology, Uttarakhand Technical University (FOT), Dehradun, India

 2Assistant Professor, Uttarakhand Technical University (FOT), Dehradun, India

Abstract: Data mining and efficient knowledge discovery in database have been attracting a significant amount of research, industry
attention in mostly all the fields. The paper discusses about “Bug prediction”: an essential phase in the process of bug triaging and
fixing process. Bug prediction solutions have been proposed. The demonstration of their effectiveness however faces number of issues
including bug triaging, inappropriate evaluation measures: likelihood, precision and recall values. The major drawback of bug
prediction technique is unsatisfactory prediction resulting in least accuracy and conspicuous bug report. With the new advancement,
machine learning classifiers have proved and emerged as a trusted way to predict the introduction of bugs in changes made to sources.
The demerits of existing classifier based prediction techniques are insufficient data and slow performance. The objective is to reach
optimal classification performance with naïve bayes accompanied with svm (support vector machine) classifiers and substantial feature
extraction, further analyzing its performance on the basis of its evaluation measures-“likelihood, precision and recall value, f-
measure”. The evaluation result show that proposed approach can achieve better search results than existing search programs .the
work will help in precise and relevant prediction of bug reports and will help in diagnostics of mislabeling of bug reports.

Keywords: bug reports, prediction, search quality, maintenance.

1. Introduction

Identifying software faults in an effective manner is a crucial
process since corrective maintenance costs increase
exponentially if the faults are detected later in the software
development life cycle [5]. Predictive models have been
used to predict newly reported bugs by assigning priority of
each bug. Bug tracking repositories like Bugzilla and others
are used for monitoring and managing the software systems.
In bug tracking system, record of different features about the
bugs, such as when the bugs was reported and in which
component are maintained. Work regarding software
maintenance [1, 13] and evolution [12] often require
information on both the bugs that are reported and the fixes
that developers applied. Therefore, open source software
systems receive abundant rate of bug reports daily. Also, bug
triaging, the process of assigning bugs to a developer, is a
labor-intensive, time-consuming and fault prone if done
manually. Many a time’s security reports are mislabeled and
managing them consumes lots of time.

Databases with hundreds of fields and tables and millions of
records and multi gigabyte size were commonplace and tera
byte database came to use from last few years. Low noise
data i.e. few data errors are another consideration and
“accessing of statistical significance”: problem occurred
when the system is searching over many problems at a time.
A key finding to the software testing is the fact that faults
tends to cluster; i.e. to be contained in a limited number of
software modules [11]. This strongly motivates the use of
software fault prediction models which provide an sure and
considerable indication whether the source is likely to
contain faults i.e. to construct such prediction model that
timely indicates fault segments or fault report, a number of
solution have been proposed.

Previous work formulated the problem as a classification
task that automatically suggested the files where a bug was
almost likely to be fixed. Based on its bug report’s content.
They build predictive model that extracted features with
actual fix locations and also trained a prediction model that
later predicts the fix location for a new bug report or say
small number of bug reports. Classification technique
implemented is naïve bayes. This approach suffered from the
demerit that only predictable reports were considered and
deficient reports were avoided at the first step. And also this
was the reason to lower its evaluation measures. In this
paper the goal is to improve the prediction accuracy along
with its evaluation measures. Before, the algorithm only
concentrated on the best parameter for one particular model
using a limited set of data. It is termed as “over fitting” .It
used to model only the general patterns in the data and noise
specific to the data set, resulting in poor performance of the
model at the time of testing data. This called the need of
cross validation, regularization and other sophisticated
statistical strategies.

To summarize, we make the following key contribution in
this paper:
1. We reach much higher prediction accuracy compared to

other classification based bug prediction, fix and triaging
methods by:
 Using features of bug reports other than the textual data.

Besides the normal bug description used in prior work,
we incorporated more features like the component in
which bug belongs to.

 Most importantly, we have considered both security bug
reports and non security bug reports considering
statistical bug track and evaluated the result in first
module using each reports probability separately. This
helps in the wise evaluation of result.

We perform experimental evaluation using bug reports
datasets obtained from real projects. We used larger datasets
compared to previous work. The experimental results show

Paper ID: 02014243 894

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

that building a classifier model using the different feature.
Our evaluation shows the effectiveness of the two phase
predictor over the other models and suggests tangible
benefits when deploy.

Figure 1: shows the applications to manage database in
various department.

2. The traditional method of turning data into data into
knowledge relied on manual analysis & interpretation &
faced many faults. The need of software maintenance and
efficiency arises because it is important in every field
such as:
 Health care: common need for specialist to periodically

analyze current trends and change in health care. In this
case efficiency plays an important role.

 Marketing: The primary application in database
marketing system which analyze customer database to
identify customer groups and forecasts their behavior.
Thereby, fraud detection showed its importance in this
field too to achieve customers satisfaction and security.

Likewise in every field where knowledge discovery and data
access is used, data cleaning and fault prediction is also
required in them. The rest of the paper is organized as
follows: section2 describes the related work and section 3
describes proposed approach. The experimental evaluation
and fault measure validation are presented in section
4.Section 5 discusses threats to validity and section 6
concludes the paper.

2. Related work

Many approaches adopted both machine learning and
information retrieval techniques to improve the bug triaging
process. Cubranic et al.[4] were the first to use a text
classification approach to automatically assign bug reports to
developers. Anvik et al. [6] [7] improved the approach
proposed by Cubranic et al. by removing inactive
developers. By inactive developers here, we mean that
developers with a too low bug fixing frequency or
developers those who are not working on the project
anymore. They employed SVM, Naïve Bayes and Decision
Trees classification techniques, and reported prediction
accuracy of up to 64%.Several approaches were proposed in
order to enhance bug assignment accuracy. Park et al.[8]

proposed a bug triaging approach. Their approach
incorporated collaborative filtering recommender and topic
modeling to improve bug prediction and triaging, reduce the
sparseness of training data. Zou et al. [13] proposed the
training set reduction with both feature selection and
instance selection technique for bug triage. Alenezi et al.
employed five state-of-the art term selection methods on the
textual description of bug reports to produce discriminating
terms. After that they built a classification model on the
discriminating terms using Naïve Bayes classifier.

Let us discuss here about assignment automation
.assignment automation is to lighten the load for a triager by
recommending, for a given bug report [7], who might be
appropriate for it and address all the problems accurately. To
date, two predominant types of approaches have emerged:
(1) Machine learning techniques and
(2) Statistical analysis techniques of bug tossing graphs.

In the first approach, features such as keywords and
metadata are extracted from past bug reports and, together
with data linking these bug reports to developers who then
fixed them, used to train a machine learning model [7].
Several other studies refine the pure machine learning
approach like Latent Dirichlet Allocation to categorize bug
reports [9], leveraging fuzzy set-based modeling to automate
developer tasks [3], or processing of source code authorship
information to recommend developers [10]. In the second
type of approach efficient statistical analysis is the major
part if it is attained. This approach relies on statistical
analysis of bug tossing graph. A bug tossing graph captures
the history of bug report reassignment from developer to
developer, and uses it as a source for a statistical analysis
that aims to detect repeated pattern.

2.1 Classifier Used

Bayesian Network Classifier

Naïve Bayes Classifier: A naïve bayes classifier is a simple
probabilistic classifier based on applying Bayes’ theorem
(from Bayesian statistics) with strong (naïve) independence
assumptions. A more descriptive term for the underlying
probability model would be “independent feature model”.

In simple terms, a naïve bayes classifier assumes that the
presence (or absence) of a particular feature of a class is
unrelated to the presence (or absence) of any other feature
[12]. For example, a fruit may be considered to be an apple
if it is red, round and about 4 inches in diameter. Even if
these features depend on each other or upon the existence of
the other features, a naïve bayes classifier considers all of
these properties to independently contribute to the
probability that this fruit is an apple. Depending on the
precise nature of the model naïve bayes classifier, it can be
trained efficiently in a supervised state. Also, in many
practical applications, parameter estimation for naïve bayes
models uses the method of likelihood; if we elaborate in
simple words, one can work with the naïve bayes model
without believing in Bayesian probability or using any
Bayesian methods [4]. In spite of their naïve design and
apparently over simplified assumptions, naïve bayes

Paper ID: 02014243 895

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

classifiers have worked quite well in many complex real-
world situations.

The Naive Bayes Probabilistic Model: The probability
model for a classifier is a conditional model P(c|f1….fn) over
a dependent class variable with a small number of outcomes
or classes, conditional on several feature variables f1 through
fn.

Support Vector Machine: Support Vector Machines
(SVM’S) are relatively new learning method used for binary
classification. SVM’s introduce the notion of a kernel
induced feature space which cast the data into higher
dimensional space where the data is separable [11].
Furthermore, the VC-dimension (a measure of a system’s
likelihood to perform well on unseen data) of SVM can be
explicitly calculated. Overall, SVM’S are intuitive,
theoretically well-founded and have shown to be practically
successful. SVM’s have also trained to solve regression
tasks (where the system is trained to output a numerical
value, rather than \yes/no’’ classification) finding the
optimal curve to the data is difficult and it would be not a
intelligent decision to use the method of finding the optimal
hyper plane. The process is to pre-process the data in such a
way that the problem is transformed into one of finding a
simple hyper plane.

Natural Language Processing: Natural language presents
significant opportunities for mining in free form text,
especially for automated annotation and indexing prior to
classification of text corpora limited parsing capabilities can
help substantially in the task of deciding what an article
refers to. Hence, the spectrum from simple natural language
processing all the way to language understanding can help
substantially. Also natural language processing can
contribute significantly as effective interface for stating hints
to mining algorithms and visualization in explaining
knowledge derived.

3. Proposed Approach

We propose machine learning approach to predict buggy
files to fix from the given bug reports.

3.1 Feature Extraction

A bug report is the main source of information for
developers to understand to understand a bug i.e. the bug
summary briefly describes the bug while the initial
description it in detail, metadata provides bug’s basic
information such as version and comments record
discussions from bug reporters and developers. As the
approach uses machine learning classification. The complete
process contains the following major steps:

1) Bug Representation: The bug reports are collected and
the collections of bug reports are represented and
grouped together to form a master bug report. This
master report would be useful ahead for the ongoing
process.

2) Query Formulation: Now, for further processing of the
model, the short description and the keywords of the
master bug report are combined to one query. Note that

every description should be valid. The short description
of the report includes summary, initial description and
metadata (OS, priority, status and reporter).

3) Relevance Labeling: we decided labels or grade
according to the status in the training data that either it is
resolved, new, unresolved, verified or unconfirmed. The
top k reports that are verified are given the resolution
fixed and also there are reports that carry a resolution
grade: duplicate, invalid and others. Each report is also
assigned a category of non security bug report (NSBR)
and security bug report (SBR).

4) Feature Vector Generation: As our approach uses
machine learning classification, we transformed a bug
report into a feature vector.

The queries and textual bug reports require the following
preprocessing steps:
1) Word regularization: All letters are lowercased. Words

are segmented by standard whitespace characters.
2) Word stemming: Stemming is a commonly used

technique to normalize words with the same root by
removing their suffixes. For e.g.: compute is the stem of
computes, computing and computed.

3) Word splitting: in bug reports, there is much source code
mixed in the text.

4) Stop words removal: stop words are those words that do
not contribute an actual semantic meaning, such as the
prepositions. We remove the stop words, according to the
stop word list.

After the whole process was executed, stop words from the
summary will be removed .It also showed the frequency of
an alphabet occurring maximum times.

Figure 2: Showing the process of pre-pre-processed new
loaded data with precision and recall value of bug reports

with respect to values of SBR and NSBR.

Figure 3: showing the frequency of the words occurrence as
frequent item. Here S has the maximum frequency of

occurring as a frequent item.

Paper ID: 02014243 896

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.2 Data Preprocessing

A first important step in each data mining exercise is
preprocessing the data. Bug reports are unstructured data
which contain irrelevant terms .Therefore, it becomes
necessary to apply the traditional text processing approach to
transform the text data into a meaningful representation.
After the stop words removal, the approach constructs a bug
term matrix frequency. After that a filtering is performed to
refine the training set further to remove reports that are
assigned to inactive developers or reports that do not have
sufficient words to describe themselves as meaningful
information. Each observation (software module or file) in
the data sets consists of unique ID, several static features and
an error count with error description. Naive Bayes classifier
is used to build the predictive model. Although it is known
for its simplicity, it is well suited to our problem. The Naïve
Bayes algorithm has been found to perform astonishingly
well in information retrieval. In the existing work, precision
values were not getting merge and likelihood was also not
accurate. In the proposed work, after the stop words
removal, we will get a frequency of the words i.e.
occurrence of each word as a frequent item. Next we will
calculate the recall and likelihood in the summary. It showed
show that if we bug track words individually then the
resulting precision and likelihood is high and iterations are
low. So when we do it by implementing on summary
through NLP (Natural Language Processing) taking it
towards SVM (Support Vector Machine), likelihood can be
reduced.

Taking this model to a statistical and probabilistic approach,
it allows us to capture uncertainty about the model i.e. in a
principle way by determining probabilities of the outcomes.
We aim to solve diagnostic and predictive problem. After
the mining process is been finished, the resultant file is been
saved in an attribute relationship file format. This is been
read as the test set file for each source file. The major
problem is of mislabeling of SBR (secure bug reports) as
NSBR (non secure bug reports) that causes serious damage
to software systems stakeholders sometimes due to delay of
identifying and fixing the involved security bug. Therefore
we calculated the probability in terms of security bug reports
and non security bug reports separately and their precision
and recall value.

Figure 4: shows the count of each processed word after
stemming each attribute individually with recall and

likelihood.

4. Fault Measure Validation

To quantitatively evaluate a bug tracking approach, we
propose to use standards metrics from the field of
information retrieval, namely Likelihood, Precision, Recall,
And F-measure metrics.
 Likelihood measures the accuracy of prediction results.

This is an effective measure to evaluate recommendation
techniques. We consider the prediction results to be
correct if at least one of the recommended k files matches
one of the actual source or patch files for a given bug
report. If none of the recommended files matches, the
prediction is correct. We denote the number of bug reports
as NC. If the addressing prediction is correct, NIC if
prediction is incorrect. The following formula computes
the percentage of bug reports for which the prediction is
correct:
Likelihood = NC (NC + NIC)

 Precision characterizes the number of correctly predicted
files over the number of files recommended by our
approach. We denote the set of genuine files fixed for a
bug report as FB and the set of recommended files for
diagnostics as FR:

Precision = | FB FR | | FR |
 Recall characterizes the number of correctly predicted

files over the number of actual fixed files:
Recall =| FB FR | | FB

 F1 score is a measure of test’s accuracy in statistics. It
considers both the precision p and the recall r of the test to
compute the score: p is the number of correct results
divided by the number of all returned results and r is the
number of correct results divided by the number of results
that should have been returned.

Paper ID: 02014243 897

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

F1=2. Precision. Recall Precision + Recall)

The F1 score can be interpreted as a weighted average of the
precision and recall, where an F1 score reaches its best score
at 1 and worst score at 0.

4.1 Research Questions and Metrics

 Question 1: which variable lead to best bug prediction
when using feature selection?
The three main variables affect bug prediction
performance that are discussed in this paper: 1) type of
classifier (Naïve Bayes, Support Vector Machine), 2)
process of feature extraction, and 3) whether multiple
instances of a particular feature are significant i.e. in terms
of count or whether only the existence of a feature is
significant (binary).In this approach feature selection is
performed, followed by computation per project accuracy
.once all projects are complete, average values across all
projects are computed. Every result in the table reports the
standard deviation.

 Question 2: what is the sensitivity of the tool when
training data is changed?
Advanced techniques for diagnostic of data with the tool,
use machine learning algorithms that rely on training data
for computing the similarity thresholds for detection of
bug links. Variations in real-world datasets may therefore
impact the performance of such bug linking tools.
Consequently, for a bug linking tool that relies on machine
learning approaches, it is important to consider and
investigate its sensitivity when data is trained and triaged.

 Question3: How is the proposed approach in terms of time
efficiency?
We, examined the efficiency of the proposed approach in
terms of training time against different sizes of the training
set, i.e. the numbers of pairs used for training the Naïve
Bayes model and how much time effective is it to
implement on a summary through SVM after being trained
to reduce likelihood and get good results.

5. Threats to Validity

There are potential threats to the validity of our work. Like
other data mining research work, our conclusions could be
biased by the type of data that were used. To validate our
approach, we perform evaluations on reports collected from
popular, large – scale open source systems. Choosing reports
from open source community was intentionally done
because they are high quality reports and extraction of data
from them could be the efficient one. Some may consider
evaluation method as biased; we laid emphasis on measuring
the prediction accuracy using likelihood, which considers
the prediction to be correct if at least one of the
recommended files matches the actual patch file. However
the relative improvement using the classifier the extraction
techniques cannot be ignored.

6. Conclusions and Future Work

Time and cost effective software development are decisive
for today’s developers, several approaches to tackle the
problem of software bugs have been investigated. Software
bug prediction can be regarded as just one piece of the
solution to these issues. We computed prediction in a series
of training and processing datasets. In our work we provide a
clean open source datasets for bug diagnostics. The results
showed that overall approach received very good precision,
for maximum number of source files i.e. over 90%, for some
programs, but delivers little lesser recall rates. The f-
measure results proved to be improved but also showed there
is room for improvement in the area of bug linking. Now, if
we talk about misclassifying a faulty instance, then our
findings indicate it to be the appropriate approach to solve
this problem. Using Bayesian network learners, into these
different information sources could be gained which is still a
topic left for future research and efficient bug linking
approach should be worked upon to solve the problem of
software teams and save time.

References

[1] A. Mockus, R.T. Fielding, and J.D. Herbsleb, “Two
case studies of open source software development:
“Apache and Mozilla,” ACM Trans. Softw. Eng,
Methodol.vol. 11, no. 3, pp. 309-346, 2002.

[2] A. Zeller, J. Krinke, Essential Open Source Tool Set,
John Wiley and Sons, 2005.

[3] A.Tamrawi, T.T. Nguyen, J.Al-Kofahi, and T.N
Nguyen, “Fuzzy Set Based Automatic Bug Triaging
(NIER track)”, 33rd ICSE, 2012, pp, 125-130.

[4] Cheng, J., R. Greiner, J. Kelly, D. Bell and w.liu,
2002.Learning Bayesian networks from data: an
information- theory based approach, Artificial
Intelligence, 137:43-90.

[5] Based approach, D.Cubranic and G.C Murphy,
“automatic bug triaging using text categorization,” in
SEKE 2004: Proceedings of the Sixteenth International
Conference on Software Engineering. Cite seer 2004,
pp. 92-97.

[6] Fisher, M., M. Pinzger and H.Gall, 2003.Populating a
release history database from version control and bug
tracking systems, proceeding on IEEE Conference on
software maintenance.

[7] J.Anvik and G.C Murphy, “Reducing the effort of bug
report triage: recommenders for development-oriented
decisions,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 20, no 3, p. 10, 2011.

[8] J.Anvik, L. Hiew, and G.C Murphy, “who should fix
this bug?’’ in proceeding of the 28th international
conference on software engineering. ACM, 2006,
pp.361-370.

[9] J-W. Park, M-W. Lee, J. Kim, S. Won Hwang, and S.
Kim, “costriage: a cost-aware triage algorithm for bug
reporting system.” in, AAAI, W. Burgard and D. Roth,
Eds. AAAI Press, 2011.

[10] K.Somasundaram and G.C.Murphy, “Automatic
categorisation of bug reports using latent Dirichlet
allocation,” 5th ISEC, 2012, pp, 125-130.

Paper ID: 02014243 898

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[11] Kumaravel, A. and K. Rangarajan, 2013.Algorithm for
automation specification for exploring dynamic
labyrinths, Indian Journal of Science and Technology,
6(6).

[12] Kumar Giri, R. and M. Saikia, 2013. Multipath routing
for admission control and load balancing in wireless
mesh networks”, International Review on Computer and
Software, 8(3):779-785.

[13] M. Linares- Vasquez, K. Hossen, H. Dang, H. Kagdi,
M. Gethers, and D. Poshyvank, “Triaging Incoming
Change Requests: Bug or Commit History, or Code
Authorship?” 28th, ICSM, 2012.

[14] Sherer, S., 1275. Software fault prediction, journal of
systems and software, 29(2): 25-105.

[15] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Predicting
the location and number of faults in large software
systems,” IEEE Trans. Softw. Eng., vol. 31, no. 4, pp.
340-355, 2005.

[16] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards
training set reduction for bug triage,” in Proceeding of
the 2011 IEEE 35th Annual Computer Software and
Applications Conference, Ser. COMPSAC ’11.

[17] Z.Yin, D.Yuan, Y.Zhou, S.Pasupathy, and L.
Bairavasundaram, “How do fixes becomes bugs?” in
ESEC/FSE, 2011.

Author Profile

Shubha Sharma has received her degree in bachelor
Of technology in Information Technology from
Uttarakhand Technical University, Dehradun in
(2007-2011).At present she is pursuing Master Of

Technology in Computer Science & Engineering from Uttarakhand
Technical University in (2012-2014).

.

Paper ID: 02014243 899

