
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Review Paper on Secure Hashing Algorithm and Its
Variants

Priyanka Vadhera1, Bhumika Lall2

1, 2Department of Computer Science B.S. Anangpuria Institute of Technology and Management, India

Abstract: SHA stands for "secure hash algorithm". The four SHA algorithms are structured differently and are named SHA-0, SHA-
1, SHA-2, and SHA-3. Secure hashing algorithm is a method that produces a message digest based on principles similar to those used
in the design of the MD4 and MD5message digest algorithms, but has a more conservative design.SHA appears to provide greater
resistance to attacks, supporting the NSA’s assertion that the change increased the security. This is a review paper which includes the
comparisons between different secure hashing algorithms.

Keywords: SHA-1, SHA-2, SHA-512, message digest, data integrity, message authentication

1. Introduction

Cryptographic hash functions have many information
security applications, notably in digital signatures, message
authentication codes (MACs), and other forms
of authentication. They can also be used as ordinary hash
functions, to index data in hash tables, for fingerprinting, to
detect duplicate data or uniquely identify files, and
as checksums to detect accidental data corruption. Indeed, in
information security contexts, cryptographic hash values are
sometimes called (digital) finger prints, checksums, or
just hash values, even though all these terms stand for more
general functions with rather different properties and
purposes.

A cryptographic hash function is a hash function that takes
an arbitrary block of data and returns a fixed-size bit string,
the cryptographic hash value, such that any (accidental or
intentional) change to the data will (with very high
probability) change the hash value. The data to be encoded
are often called the message, and the hash value is
sometimes called the message digest or simply digests the
methods resemble the block cipher modes of
operation usually used for encryption. All well-known hash
functions, including MD4, MD5, SHA-1 and SHA-2 are
built from block-cipher-like components designed for the
purpose, with feedback to ensure that the resulting function
is not invertible. SHA-3 finalists included functions with
block-cipher-like components though the function finally
selected, was built on a cryptographic sponge instead.

A standard block cipher such as AES can be used in place of
these custom block ciphers; that might be useful when an
embedded system needs to implement both encryption and
hashing with minimal code size or hardware area. However,
that approach can have costs in efficiency and security. The
ciphers in hash functions are built for hashing: they use large
keys and blocks, can efficiently change keys every block,
and have been designed and vetted for resistance to related-
key attacks. General-purpose ciphers tend to have different
design goals. In particular, AES has key and block sizes that
make it nontrivial to use to generate long hash values; AES
encryption becomes less efficient when the key changes
each block; and related-key attacks make it potentially less
secure for use in a hash function than for encryption.

1.2 SHA-0

A retronym applied to the original version of the 160-bit
hash function published in 1993 under the name "SHA". It
was withdrawn shortly after publication due to an
undisclosed "significant flaw" and replaced by the slightly
revised version SHA-1.

1.3 SHA-1

SHA-0 is the original version of the 160-bit hash function
SHA-1 is very similar to SHA-0, but alters the original SHA
hash specification to correct alleged weaknesses. SHA-
1[1,5] is the most widely used of the existing SHA hash
functions, and is employed in several widely used
applications and protocols.

SHA-1 produces a message digest based on principles
similar to those used by Ronald L. Rivest of MIT in the
design of the MD4 and MD5message digest algorithms, but
has a more conservative design. SHA-1 differs from SHA-0
only by a single bitwise rotation in the message schedule of
its compression function; this was done, according to the
NSA, to correct a flaw in the original algorithm which
reduced its cryptographic security. However, the NSA did

Paper ID: 0201418 629

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

not provide any further explanation or identify the flaw that
was corrected. Weaknesses have subsequently been reported
in both SHA-0 and SHA-1. SHA-1 appears to provide
greater resistance to attacks, supporting the NSA’s assertion
that the change increased the security.

SHA-1 forms part of several widely used security
applications and protocols,
including TLS and SSL, PGP, SSH, S/MIME, and IPSec.
Those applications can also use MD5; both MD5 and SHA-1
are descended from MD4. SHA-1 hashing is also used
in distributed revision control systems like Git, Mercurial,
and Monotone to identify revisions, and to detect data
corruption or tampering. The algorithm has also been used
on Nintendo's Wii gaming console for signature verification
when booting, but a significant implementation flaw allows
for an attacker to bypass the system's security scheme

Nobody has been able to break SHA-1, but the point is the
SHA-1, as far as Git is concerned, isn't even a security
feature. It's purely a consistency check. The security parts
are elsewhere, so a lot of people assume that since Git uses
SHA-1 and SHA-1 is used for cryptographically secure
stuff, they think.

Due to the block and iterative structure of the algorithms and
the absence of additional final steps, all SHA functions are
vulnerable to length-extension and partial-message collision
attacks.[15] These attacks allow an attacker to forge a
message signed only by a keyed hash – SHA
(message||key)or SHA(key||message) – by extending the
message and recalculating the hash without knowing the
key. The simplest improvement to prevent these attacks is to
hash twice: SHAd(message)=SHA(SHA(0b||message)) (the
length of 0b, zero block, is equal to the block size of hash
function).
These are examples of SHA-1 message digests in
hexadecimal and in Base64 binary to ASCII text encoding.

Example:

SHA (“The quick brown fox jumps over the lazy dog”)

Gives hexadecimal:

2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

Even a small change in the message will, with
overwhelming probability, result in a completely different
hash due to the avalanche effect.

SHA1 (“”) Gives hexadecimal:

da39a3ee5e6b4b0d3255bfef95601890afd80709

1.3.1 SHA-1 PSEUDOCODE
Pseudocode for the SHA-1 algorithm follows:
Step1:
initialize all the variables
ml = message length in bits (always a multiple of the
number of bits in a character).

Step2:

Pre-processing:
append the bit '1' to the message i.e. by adding 0x80 if
characters are 8 bits.
Step 3:
Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
 break chunk into sixteen 32-bit big-endian words w[i], 0 ≤
i ≤ 15
Step 4 :
 Extend the sixteen 32-bit words into eighty 32-bit words:
 for i from 16 to 79
 w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16])
leftrotate 1
Step 5:
 Initialize hash value for this chunk:
 Main loop:

 for i from 0 to 79
 if 0 ≤ i ≤ 19 then
 f = (b and c) or ((not b) and d)
 k = 0x5A827999
 else if 20 ≤ i ≤ 39
 f = b xor c xor d
 k = 0x6ED9EBA1
 else if 40 ≤ i ≤ 59
 f = (b and c) or (b and d) or (c and d)
 k = 0x8F1BBCDC
 else if 60 ≤ i ≤ 79
 f = b xor c xor d
 k = 0xCA62C1D6

 temp = (a leftrotate 5) + f + e + k + w[i]
 e = d
 d = c
 c = b leftrotate 30
 b = a
 a = temp
Step 6:
 Add this chunk's hash to result so far:
 h0 = h0 + a
 h1 = h1 + b
 h2 = h2 + c
 h3 = h3 + d
 h4 = h4 + e
Step 7:
Produce the final hash value (big-endian) as a 160 bit
number

1.4 SHA- 2 and its Variants [8, 10]

SHA-2 is a set of cryptographic hash functions the variants
of SHA-2 areSHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256. SHA-2 includes a significant
number of changes from its predecessor, SHA-1. SHA-2
currently consists of a set of six hash functions
with digests that are 224, 256, 384 or 512 bits.

SHA-256 and SHA-512 are novel hash functions computed
with 32-bit and 64-bit words, respectively. They use
different shift amounts and additive constants, but their
structures are otherwise virtually identical, differing only in
the number of rounds. SHA-224 and SHA-384 are simply

Paper ID: 0201418 630

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

truncated versions of the first two, computed with different
initial values. SHA-512/224 and SHA-512/256 are also
truncated versions of SHA-512[3.6], but the initial values
are generated using the method described in FIPS PUB 180-
4 security flaws were identified in SHA-1, namely that a
mathematical weakness might exist, indicating that a
stronger hash function would be desirable. Although SHA-2
bears some similarity to the SHA-1 algorithm, these attacks
have not been successfully extended to SHA-2.

Currently, the best public attacks break preimage
resistance 52 rounds of SHA-256 or 57 rounds of SHA-512,
and collision resistance for 46 rounds of SHA-256.

NIST added three additional hash functions in the SHA
family. The algorithms are collectively known as SHA-2,
named after their digest lengths (in bits): SHA-256, SHA-
384, and SHA-512.

The updated standard included the original SHA-
1[1,4] algorithm, with updated technical notation consistent
with that describing the inner workings of the SHA-2 family.
Specifying an additional variant, SHA-224, defined to match
the key length of two-key Triple DES. The standard was
updated in FIPS PUB 180-3, including SHA-224 from the
change notice, but otherwise making no fundamental
changes to the standard. The primary motivation for
updating the standard was relocating security information
about the hash algorithms and recommendations for their use
to Special Publications 800-107 and 800-57.Detailed test
data and example message digests were also removed from
the standard, and provided as separate documents. The
standard was updated in FIPS PUB 180-4, adding the hash
functions SHA-512/224 and SHA-512/256, and describing a
method for generating initial values for truncated versions of
SHA-512. Additionally, a restriction on padding the input
data prior to hash calculation was removed, allowing hash
data to be calculated simultaneously with content generation,
such as a real-time video or audio feed. Padding the final
data block must still occur prior to hash output.

The publication disallows creation of digital signatures with
a hash security lower than 112-bits after 2013. The previous
revision from 2007 specified the cutoff to be the end of
2010.In August 2012, NIST revised SP800-107 in the same
manner. The NIST hash function competition selected a new

hash function, SHA-3, in 2012.The SHA-3 algorithm is not
derived from SHA-2.
Examples of SHA-2[6, 9] variants
1. SHA224("")

0x
d14a028c2a3a2bc9476102bb288234c415a2b01f828ea62
ac5b3e42f

2. SHA256("")
0x
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934c
a495991b7852b855

3. SHA384("")
0x
38b060a751ac96384cd9327eb1b1e36a21fdb71114be074
34c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b

4. SHA512("")
cf83e1357eefb8bdf1542850d66d8007d620e4050b5715d
c83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f
63b931bd47417a81a538327af927da3e

5. SHA512/224("")
0x
6ed0dd02806fa89e25de060c19d3ac86cabb87d6a0ddd05
c333b84f4

6. SHA512/256("")
0x
c672b8d1ef56ed28ab87c3622c5114069bdd3ad7b8f9737
498d0c01ecef0967a

Pseudocode for the SHA-256 algorithm follows:
Note 1: All variables are 32 bit unsigned integers and
addition is calculated modulo 232
Note 2: For each round, there is one round constant k[i] and
one entry in the message schedule array w[i], 0 ≤ i ≤ 63
Note 3: The compression function uses 8 working variables,
a through h
Note 4: Big-endian convention is used when expressing the
constants in this pseudocode, and when parsing message
block data from bytes to words, for example, the first word
of the input message "abc" after padding is 0x61626380

step 1: Initialize hash values:

first 32 bits of the fractional parts of the square roots of the
first 8 primes 2..19
Step 2:
Initialize array of round constants:
first 32 bits of the fractional parts of the cube roots of the
first 64 primes 2..311
step 3:
Pre-processing:
append the bit '1' to the message
append k bits '0', where k is the minimum number >= 0 such
that the resulting message
 length (modulo 512 in bits) is 448.
append length of message (without the '1' bit or padding), in
bits, as 64-bit big-endian integer
 (this will make the entire post-processed length a multiple
of 512 bits)
Step 4:
Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk

Paper ID: 0201418 631

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 create a 64-entry message schedule array w[0..63] of 32-
bit words
Step 5:
 Extend the first 16 words into the remaining 48 words
w[16..63] of the message schedule array:
 for i from 16 to 63
 s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18)
xor (w[i-15] rightshift 3)
 s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19)
xor (w[i-2] rightshift 10)
 w[i] := w[i-16] + s0 + w[i-7] + s1
Step 6:
 Initialize working variables to current hash value

 Compression function main loop:
 for i from 0 to 63
 S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e
rightrotate 25)
 ch := (e and f) xor ((not e) and g)
 temp1 := h + S1 + ch + k[i] + w[i]
 S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a
rightrotate 22)

 maj := (a and b) xor (a and c) xor (b and c)
 temp2 := S0 + maj

 h := g
 g := f
 f := e
 e := d + temp1
 d := c
 c := b
 b := a
 a := temp1 + temp2
Step 7:
 Add the compressed chunk to the current hash value
Step 8:
Produce the final hash value (big-endian):
digest := hash := h0 append h1 append h2 append h3 append
h4 append h5 append h6 append h7. SHA-224 is identical to
SHA-256[11], except that:
 the initial hash values h0 through h7 are different, and
 the output is constructed by omitting h7.

1.5 Comparison of Different SHA Functions

Algorithm and
variant

Output
size (bits)

Internal
state size

(bits)

Block
size

(bits)

Max
message
size (bits)

Word
size

(bits)

Rounds Bitwise operations Collisions found Example
Performance (MiB/s)

MD5 (as reference) 128 128 512 264 − 1 32 64 and, or, xor, rot Yes 335
SHA-0 160 160 512 264 − 1 32 80 and, or, xor, rot Yes -
SHA-1 160 160 512 264 − 1 32 80 and, or, xor, rot Theoretical attack 192

SHA-
2

SHA-224
SHA-256

224
256

256 512 264 − 1 32 64 and, or, xor, shr, rot None 139

SHA-384
SHA-512

SHA-512/224
SHA-512/256

384
512
224
256

512 1024 2128 − 1 64 80 and, or, xor, shr, rot None 154

1.6 Proposed Work

This research paper consists of comparisons between
different secure hashing algorithms. Each algorithm takes
the time for the computation of hash value. By computing
the time required from each of these algorithm and finding
the algorithm which will require the less amount of time for
computation of the hash value we can combine the best
secure hashing algorithm with network security algorithm so
as to increase the security of the data being sent.

References

[1] http://csrc.nist.gov/publications/fips/fips180-4/fips-180-
4.pdf

[2] Schneier on Security: Cryptanalysis of SHA-1
[3] "Crypto++ 5.6.0 Benchmarks". Retrieved 2013-06-13.
[4] "Cryptanalysis of MD5 & SHA-1" (PDF).
[5] "Collisions for 72-step and 73-step SHA-1:

Improvements in the Method of Characteristics".
[6] "SHA-1 Collision Search Graz".
[7] SHA-1 hash function under pressure – heise Security
[8] Classification and Generation of Disturbance Vectors

for Collision Attacks against SHA-1
[9] Cryptanalysis of MD5 & SHA-1

[10] Henri Gilbert, Helena Handschuh: Security Analysis of
SHA-256 and Sisters. Selected Areas in
cryptography 2003

[11] http://www.unixwiz.net/techtips/iguide-crypto-
hashes.html

Author Profile

Priyanka Vadhera has obtained her B. Tech degree from
maharishi Dayanand University in 2012. She is also persuing
M.Tech degree from Maharishi Dayanand University, Rohtak,
India. Her areas of interest are wireless security, networking and
signal processing.

Bhumika Lall has obtained her B. Tech and M. tech degree. she is
working as assistant professor in B. S. Anangpuria institute of
technology and management affiliated to Maharishi Dayanand
University, Rohtak. Her areas of interest are wireless security,
networking and signal processing.

Paper ID: 0201418 632

