Validated High Performance Thin Layer Chromatographic Estimation of Aceclofenac in Bulk and Pharmaceutical Dosage Forms

Helen William¹*, Dr. B. Parimala Devi², Jose Kurien¹, P. K Valsalakumari¹, C. K Mohandas²

¹College of Pharmaceutical Sciences, Government Medical College, Kottayam, Kerala, India, 686008
²Periyar Maniammai University, Vallam, Thanjavur-613403, India

Abstract: A simple, precise, accurate, and specific method is developed and validated for analysis of Aceclofenac in bulk and pharmaceutical dosage forms. The developed method used precoated silica gel 60F254 as stationary phase. The mobile phase used was a mixture of Hexane: chloroform: methanol in the ratio (6:2:2v/v). The RF value was 0.3. The detection of spots was carried out at 271nm. The calibration curve was found to be linear between 1 to 6 μg/ml with a correlation coefficient of 0.9998. The proposed method was validated according to various ICH parameters like linearity, accuracy, precision, specificity, limits of detection, limits of quantification, range and solution stability. The accuracy of the proposed method was determined by recovery studies and was found to be 98.35 to 100.43 %. Statistical analysis proves that the proposed method is suitable for the routine analysis of Aceclofenac in bulk and pharmaceutical formulations.

Keywords: Aceclofenac, HPTLC, Validation, ICH guidelines

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAID’s) are considered to be the first-line drugs in the symptomatic treatment of rheumatoid arthritis, osteoarthritis and spondylitis. The most common NSAIDs are aspirin, diclofenac, ibuprofen and naproxen. Aceclofenac is a newer derivative of Diclofenac with low gastrointestinal complications.¹ Aceclofenac displays a high degree of enantio-selectivity in its inhibitory effects on arachidonic cyclooxygenase system. It was also reported to produce less GI bleeding than other NSAIDs such as indomethacin, ibuprofen or naproxen. After oral administration, aceclofenac is rapidly and completely absorbed as unchanged drug. Peak plasma concentrations are reached approximately 1.25 to 3 h following ingestion. 4-hydroxy aceclofenac is the main metabolite detected in plasma.²

Figure 1: Structural formula of Aceclofenac

Aceclofenac is chemically 2-[(2, 6-dichlorophenylamino)phenylacetyloxy acetic acid. It has an empirical formula of C₁₆H₁₃Cl₂NO₄ and a molecular weight of 354.18472g/mol.¹ Literature survey revealed that various analytical methods like spectrophotometric [4-10] and HPLC [11-13] methods have been reported for the determination of Aceclofenac in pharmacaceutical dosage forms. The aim of this study was to develop and validate a simple, precise, accurate and rapid HPTLC method for the estimation of Aceclofenac hydrochloride in pure and pharmaceutical dosage forms.

2. Materials and Methods

2.1 Chemicals and Equipment

Aceclofenac working standard was procured as gift sample from Nice Chemicals Ltd, Kochi. Silica gel 60F 254 TLC plates (E. Merck, Mumbai) were used as a stationary phase. The reagents used were Chloroform A. R (Ranbaxy Fine Chemicals Ltd, S.A.S. Naga.). Methanol H.P.L.C, (Thomas Baker Chemicals Ltd, Mumbai) & Hexane A.R (Nice Chemicals, Cochin). A Camag HPTLC system comprising of Camag Linomat-V automatic sample applicator, Hamilton syringe, Camag TLC Scanner, Camag Win CATS software, Camag twin-trough chamber and ultra sonicator were used during the study.

2.2 Preparation of standard solution of Aceclofenac

Accurately weighed 100mg of Aceclofenac and transferred to a 100 ml standard flask, dissolved and made up to mark with methanol. The solution had a concentration of 1mg/ml. This solutions was used for application on HPTLC plate.

2.3 Development of Solvent System

For the initial studies, conventional TLC plates (10x3cm) were employed. Silica Gel GF was made into smooth slurry with water and poured on to the plates and allowed to air dry. The plates were then activated by keeping in an oven at 110°C for 30 minutes. The mobile phase was selected based on the polarity of aceclofenac and the absorption property of silica gel plates. The mobile phase was found out by trial and error method.
Hexane:chloroform:methanol mobile phase in the ratio of 3:1:1 was chosen as it gave a good Rf value of about 0.3 without any tailing.

2.4 Determination of Rf value and λmax of Aceclofenac hydrochloride

Standard solution of Aceclofenac hydrochloride(as prepared in Section 1) was applied in the form of a band using CAMAG Linomat. HPTLC Precoated plates Silica Gel 60F 254 of dimensions 10x3 cm were employed for the spotting of standard solution.

The spot was scanned by the instrument, Rf value found to be 0.3. The wavelength of the integrated spot was scanned from 200-350nm and the wavelength of max absorbance was found to be 271nm.

2.5 Determination of linearity range of Aceclofenac

Standard solution was prepared in section 1 was taken in a micro syringe previously rinsed with methanol and applied in the form of bands using CAMAG Linomat V on to HPTLC precoated plates Silica Gel 60F254, 10 ml of the mobile phase hexane: chloroform: methanol was taken in the ratio 6:2:2 in to 10x10 cm CAMAG twin trough chamber. The chamber was allowed to saturate and plate was then placed in the chamber for development. The developed plate was dried and scanned by using CAMAG TLC scanner with CATS soft ware. The six tracks were scanned and integrated and peak height and peak area were found out.

2.6 Calibration data for Aceclofenac

<table>
<thead>
<tr>
<th>Volume (μl)</th>
<th>Concentration (μg/μl)</th>
<th>Peak Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6156</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9439</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12578</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15717</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>18763</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>22135</td>
</tr>
</tbody>
</table>

The calibration curve was found to be linear in the range of 1-6μg/μl.

Figure 2: The calibration curve was found to be linear in the range of 1-6μg/μl.
Estimation of Aceclofenac hydrochloride in dosage forms

a. Preparation of sample solutions from Aceclo and Aceroc tablets

Twenty tablets each of Aceclo and Aceroc were accurately weighed, powdered, and average weight was calculated. Weight equivalent to 100 mg each of Aceclofenac was transferred to two conical flasks and dissolved in methanol. The solution was sonicated for 15 min. The extracts were filtered through Whatmann filter paper no. 41 and the residue was washed with methanol. The extracts and washings were pooled and transferred to a 100 ml volumetric flask and volume was made with methanol to obtain a concentration of 1 μg/μl.

b. Spotting and development of spots

Standard solution as prepared in section 1 was taken in a microsyringe and concentrations of 1, 2, 3, 4 μg/μl were spotted and then 3 μl of the sample solution of Aceclo and 3 μl of the sample solution of Aceroc were spotted. The plate was then allowed to develop in a twin trough chamber previously saturated with hexane: chloroform: methanol in the ratio 6:2:2. The developed plate was dried and then scanned by using CAMAG V scanner with CATS software.

c. Scanning and integration of the chromatogram.

All the chromatograms were scanned and integrated. All the spots showed an Rf value of 0.3 and maximum value of absorbance was found to be 271 nm.

d. Calibration and quantification of Aceclo and Aceroc tablets

The areas of the chromatograms were calibrated and were used to quantify the amount of Aceclofenac in each of the tablets as shown in Table 2.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Peak Area</th>
<th>% Label claim (area wise)</th>
<th>Amount of active substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceclofenac</td>
<td>12578</td>
<td>95.38</td>
<td>95.38 mg</td>
</tr>
<tr>
<td>Aceclo</td>
<td>11997</td>
<td>95.38</td>
<td>95.38 mg</td>
</tr>
<tr>
<td>Aceroc</td>
<td>12102</td>
<td>96.21</td>
<td>96.21 mg</td>
</tr>
</tbody>
</table>

Method Validation

The method was validated as per ICH guidelines with respect to linearity, range, sensitivity, specificity, precision, accuracy, and robustness.

<table>
<thead>
<tr>
<th>Volume applied(μl)</th>
<th>Peak Area</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9436</td>
<td>9439</td>
<td>9448</td>
<td>9441</td>
</tr>
<tr>
<td>4</td>
<td>15717</td>
<td>15735</td>
<td>15703</td>
<td>15718.3</td>
</tr>
<tr>
<td>6</td>
<td>22135</td>
<td>22034</td>
<td>22157</td>
<td>22108</td>
</tr>
</tbody>
</table>

Sensitivity

The sensitivity of the method was estimated in terms of Limit of Quantification and Limit of Detection. LOD and LOQ were determined by applying decreasing amount of the drug in triplicate on the plate. The LOD & LOQ was found to be 10 & 20 ng/spot respectively.

Specificity

No interference was observed during analysis between drugs and excipients in tablet. Hence the method was found to be specific.

Precision

Precision of the method was tested by performing intra-day and inter-day studies.

Intraday Precision

Intra-day precision was determined by analyzing standard solutions of Aceclofenac at three different concentrations in the linearity range of the drug, for three times on the same day. The intra-day relative standard deviations were in the range of 0.07 – 0.3% as shown in the table 3 below. These low values indicated that the method is precise.

Interday Precision

Interday Precision was found out by carrying analysis of the standard drug at three concentration three times for three different days and the % RSD was calculated. The inter-day relative standard deviations were in the range of 0.06 – 0.3% as shown in the table 4 below. These low values indicated that the method is precise.

Table 2

Areas under curve (AUC) of six different concentrations were determined and a calibration plot was obtained by plotting AUC area versus concentration equation. Linearity range was found to be in the range of 1-6 μg/spot with a correlation coefficient of 0.9998.
The accuracy of the analysis was evaluated by determination of recovery at three different concentrations of the drug in the dosage form. The results indicated that the method enables accurate estimation of the drugs in the tablet dosage form. The assay values for the marketed formulations were found to be within the limits. The low RSD value indicated the suitability of the method for routine analysis of Aceclofenac in pharmaceutical dosage forms. Thus the method can be applied for the routine analysis of Aceclofenac in pharmaceutical formulations.

4. Conclusion

The developed HPTLC method is simple, precise, specific and accurate. Statistical analysis indicates that the method is reproducible and selective for the routine analysis of Aceclofenac in bulk drug and pharmaceutical formulations without interference from excipients. Hence this method can be easily and conveniently adopted for the routine analysis of Aceclofenac in bulk and its pharmaceutical dosage forms.

5. Future Scope

The developed HPTLC method can be further utilized for analyzing combination dosage forms of Aceclofenac.

References


Author Profile

Helen William1*, M. Pharm, Asst. Professor, College of Pharmaceutical Sciences, Government Medical College, Kottayam, Kerala, India, Pin 686008, India

Dr B. Parimala Devi2, M. Pharm, Ph.D, Director i/c, Veeramani Mohana Centre for Quality Life Engineering Research, Periyar Maniammai University, Vallam, Thanjavur – 613403, India

Jose Kurien1, M.Pharm, Associate Professor, College of Pharmaceutical Sciences, Government Medical College, Kottayam, Kerala, India, Pin 686008, India

P. K Valsalakumari1, M. Pharm, Professor of Pharmacy, College of Pharmaceutical Sciences, Government Medical College, Kottayam, Kerala, India, Pin-686008, India

C. K Mohandas2, M. Pharm, Research Scholar, Periyar Maniammai University, Vallam, Thanjavur-613403, India