
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Review Paper on Secure Hashing Algorithm and Its
Variants

Priyanka Vadhera1, Bhumika Lall2

1, 2Department of Computer Science B.S. Anangpuria Institute of Technology and Management, India

Abstract: SHA stands for "secure hash algorithm". The four SHA algorithms are structured differently and are named SHA-0, SHA-
1, SHA-2, and SHA-3. Secure hashing algorithm is a method that produces a message digest based on principles similar to those used in
the design of the MD4 and MD5message digest algorithms, but has a more conservative design.SHA appears to provide greater
resistance to attacks, supporting the NSA’s assertion that the change increased the security. This is a review paper which includes the
comparisons between different secure hashing algorithms.

Keywords: SHA-1, SHA-2, SHA-512, message digest, data integrity, message authentication

1. Introduction

Cryptographic hash functions have many information
security applications, notably in digital signatures,
message authentication codes (MACs), and other forms of
authentication. They can also be used as ordinary hash
functions, to index data in hash tables, for fingerprinting,
to detect duplicate data or uniquely identify files, and as
checksums to detect accidental data corruption. Indeed, in
information security contexts, cryptographic hash values
are sometimes called (digital) finger prints, checksums, or
just hash values, even though all these terms stand for
more general functions with rather different properties and
purposes.

A cryptographic hash function is a hash function that takes
an arbitrary block of data and returns a fixed-size bit
string, the cryptographic hash value, such that any
(accidental or intentional) change to the data will (with
very high probability) change the hash value. The data to
be encoded are often called the message, and the hash
value is sometimes called the message digest or simply
digests.

The methods resemble the block cipher modes of
operation usually used for encryption. All well-known
hash functions, including MD4, MD5, SHA-1 and SHA-2
are built from block-cipher-like components designed for
the purpose, with feedback to ensure that the resulting
function is not invertible. SHA-3 finalists included
functions with block-cipher-like components though the
function finally selected, was built on a cryptographic
sponge instead.

A standard block cipher such as AES can be used in place
of these custom block ciphers; that might be useful when
an embedded system needs to implement both encryption
and hashing with minimal code size or hardware area.
However, that approach can have costs in efficiency and
security. The ciphers in hash functions are built for
hashing: they use large keys and blocks, can efficiently
change keys every block, and have been designed and
vetted for resistance to related-key attacks. General-
purpose ciphers tend to have different design goals. In

particular, AES has key and block sizes that make it
nontrivial to use to generate long hash values; AES
encryption becomes less efficient when the key changes
each block; and related-key attacks make it potentially
less secure for use in a hash function than for encryption.

1.1 SHA-0

A retronym applied to the original version of the 160-bit
hash function published in 1993 under the name "SHA". It
was withdrawn shortly after publication due to an
undisclosed "significant flaw" and replaced by the slightly
revised version SHA-1.

1.2 SHA-1

SHA-0 is the original version of the 160-bit hash function
SHA-1 is very similar to SHA-0, but alters the original
SHA hash specification to correct alleged weaknesses.
SHA-1[1, 5] is the most widely used of the existing SHA
hash functions, and is employed in several widely used
applications and protocols.

Paper ID: 020148 478

S
si
de
bu
S
sc
ac
al
H
ex
W
S
re
th

S
ap
S
M
S
sy
re
al
co
si
by
ab
G
co
lo
1

D
an
fu
m
at
S
ex
kn

HA-1 produc
imilar to thos
esign of the
ut has a more
HA-0 only b
chedule of it
ccording to th
lgorithm wh

However, the
xplanation or

Weaknesses h
HA-0 and SH
esistance to at
he change incr

HA-1 forms
pplications an
SH, S/MIME

MD5; both MD
HA-1 hashing
ystems like G
evisions, and
lgorithm has
onsole for si
ignificant imp
ypass the sys
ble to break S

Git is concerne
onsistency ch
ot of people as
is used for cr

Due to the blo
nd the absen
unctions are v

message colli
ttacker to forg
HA (messag
xtending the m
nowing the k

ces a messag
se used by Ro
MD4 and MD
e conservativ
y a single bit
ts compressio
he NSA, to c

hich reduced
e NSA did
r identify th

have subseque
HA-1. SHA-
ttacks, suppor
reased the sec

 part of se
nd protocols, i
, and IPsec. T
D5 and SHA
g is also used
Git, Mercuria
to detect data
also been use

ignature verif
plementation f
stem's securit

SHA-1, but the
ed, isn't even
heck. The secu
ssume that sin

ryptographical

ock and iterati
nce of addit
vulnerable to
sion attacks.
ge a message
ge||key) or
message and
key. The simp

Internatio

Licensed

ge digest base
onald L. Rive
D5message d
e design. SHA
twise rotation
on function;
correct a flaw

its cryptog
not provid

he flaw that
ently been r
1 appears to
rting the NSA

curity.

everal widely
including TLS

Those applicat
A-1 are descen

in distributed
al, and Mono
a corruption o
ed on Ninten
fication when
flaw allows f
ty scheme. N
e point is the
a security fea
urity parts are
nce Git uses S
lly secure stuf

ive structure o
tional final
length-exten

[15] These at
signed only b
SHA (key||m
recalculating
plest improve

onal Journa
ISSN

Impac

Volume

d Under Crea

ed on princip
est of MIT in
digest algorith
A-1 differs fr
n in the mess

this was do
w in the orig
graphic secur
de any furt

was correc
reported in b

provide gre
A’s assertion

y used secu
S and SSL, PG
tions can also
nded from M
d revision con
otone to iden
or tampering. T
do's Wii gam

n booting, bu
for an attacke
Nobody has b

SHA-1, as fa
ature. It's pure
e elsewhere, s
SHA-1 and SH
ff, they think.

of the algorith
steps, all S
sion and part
ttacks allow

by a keyed has
message) –
the hash with

ement to prev

al of Scienc
N (Online): 23
ct Factor (201

e 3 Issue 6, J
www.ijsr.n
ative Commo

ples
the

hms,
rom
sage
one,
inal
rity.
ther
ted.

both
ater
that

urity
GP,
use
D4.

ntrol
ntify
The

ming
ut a
r to

been
ar as
ly a
so a
HA-

hms
HA
tial-

an
sh –

by
hout
vent

th
S
0

T
h
e

E
S
G
2
E
o
h

S
G
d

1

P

S
I
m
n

S
P
A
c

S
P
b
f
b
i

S
E
f
w
l

S
I
M
f
i
f
k
e
f
k
e
f
k
e
f
k

ce and Rese
19-7064

12): 3.358

June 2014
net
ons Attributi

hese att
SHAd(message
0b, zero block,

These are ex
hexadecimal
encoding.

Example:
SHA (“The qu
Gives
2fd4e1c67a2d
Even a sma
overwhelming
hash due to the

SHA1 (“”)
Gives
da39a3ee5e6b

1.2.1 SHA-1 P

Pseudo code fo

Step1:
Initialize all th
ml = message
number of bits

Step2:
Pre-processing
Append the b
characters are

Step 3:
Process the me
break message
for each chunk
break chunk in
≤ 15

Step 4:
Extend the six
for i from 16 t
w[i] = (w[i-
eftrotate 1

Step 5:
Initialize hash
Main loop:
for i from 0 to
f 0 ≤ i ≤ 19 th

f = (b and c) o
k = 0x5A8279
else if 20 ≤ i ≤
f = b xor c xor
k = 0x6ED9EB
else if 40 ≤ i ≤
f = (b and c) o
k = 0x8F1BBC
else if 60 ≤ i ≤
f = b xor c xor
k = 0xCA62C

earch (IJSR

ion CC BY

acks is
e)=SHA(SHA
, is equal to th

xamples of
and in Bas

uick brown fox

28fced849ee1
all change
g probability, r
e avalanche ef

b4b0d3255bfef

Pseudo Code

for the SHA-1

he variables
e length in b
s in a characte

g:
it '1' to the m
8 bits.

essage in succ
e into 512-bit
k
nto sixteen 32

xteen 32-bit wo
to 79
3] xor w[i-8

value for this

 79
hen
r ((not b) and

999
≤ 39
r d
BA1
≤ 59
r (b and d) or
CDC
≤ 79
r d
1D6

R)

to
A(0b||message)
he block size o

SHA-1 mes
se64 binary

x jumps over

1bb76e7391b9
in the mes
result in a com
ffect.

f95601890afd

algorithm fol

bits (always a
er).

message i.e. b

cessive 512-bi
chunks

2-bit big-endia

ords into eigh

8] xor w[i-1

s chunk:

d)

(c and d)

hash tw
)) (the length
of hash functio

ssage digests
to ASCII

the lazy dog”)
hexadecim

93eb12
sage will, w
mpletely diffe

hexadecim
d80709

llows:

a multiple of

by adding 0x8

it chunks:

an words w[i],

hty 32-bit word

14] xor w[i-

wice:
h of
on).

s in
text

)
mal:

with
erent

mal:

f the

80 if

, 0 ≤

ds:

-16])

Paper ID: 020148 479

te
e
d
c
b
a

S
A
h0
h
h2
h3
h4

S
P
nu

1

S
va
S
a
S
fu

S
co
u
th
on
si
di
ar
in
F

S
m
st
S
th
2

C
re
5

emp = (a leftro
= d
= c
= b leftrotate
= a
= temp

tep 6:
Add this chunk

0 = h0 + a
1 = h1 + b
2 = h2 + c
3 = h3 + d
4 = h4 + e

tep 7:
roduce the fi
umber

.3 SHA- 2 AN

HA-2 is a
ariants of SH
HA-512, SHA
significant n

HA-1. SHA-
unctions with

HA-256 and
omputed with
se different s
heir structures
nly in the num
imply truncate
ifferent initia
re also trunc
nitial values a
IPS PUB 180

ecurity flaws
mathematical
tronger hash
HA-2 bears

hese attacks ha
.

Currently, the
esistance 52 r
12, and collisi

otate 5) + f + e

30

k's hash to resu

final hash val

ND ITS VAR

set of crypt
HA-2 are SH
A-512/224, S
number of ch
2 currently c
digests that ar

d SHA-512
h 32-bit and 64
shift amounts
s are otherwis
mber of round
ed versions o

al values. SHA
cated version
are generated u
-4.

 were identif
weakness m
function wo

some similar
ave not been s

e best publi
rounds of SH
ion resistance

Internatio

Licensed

e + k + w[i]

ult so far:

lue (big-endia

RIANTS [8, 10

ographic has
HA-224, SHA

HA-512/256.
hanges from
consists of a
re 224, 256, 3

are novel
4-bit words, re
s and additiv
se virtually id
ds. SHA-224 a
f the first two
A-512/224 an

ns of SHA-5
using the met

fied in SHA-
might exist, in

ould be desi
rity to the SH
successfully e

ic attacks b
HA-256 or 57
e for 46 rounds

onal Journa
ISSN

Impac

Volume

d Under Crea

an) as a 160

0]:

sh functions
A-256, SHA-3

SHA-2 inclu
its predeces
set of six h

84 or 512 bits

hash functi
espectively. T
ve constants,
dentical, differ
and SHA-384
o, computed w
nd SHA-512/
12[3.6], but
thod described

1, namely tha
ndicating tha
irable. Althou
HA-1 algorith

extended to SH

break pre-im
rounds of SH

s of SHA-256

al of Scienc
N (Online): 23
ct Factor (201

e 3 Issue 6, J
www.ijsr.n
ative Commo

bit

the
384,
udes
sor,

hash
s.

ions
They

but
ring
are

with
256
the

d in

at a
at a
ugh
hm,
HA-

mage
HA-
6.

N
f
n
3
o
n
o
S
T
3
o
T
r
a
8
m
p
u
S
f
S
d
d
g
P
o

T
w
p
e
th

T
f
d

E

1
0
d
c
2
0
e
4
3

ce and Rese
19-7064

12): 3.358

June 2014
net
ons Attributi

NIST added t
family. The al
named after th
384, and SHA
original SHA-
notation consi
of the SHA-2
SHA-224, def
Triple DES. T
3, including
otherwise mak
The primary
relocating secu
and recommen
800-107 and
message diges
provided as
updated in FI
SHA-512/224
for generating
SHA-512. Add
data prior to h
data to be
generation, su
Padding the fi
output.

The publicatio
with a hash se
previous revis
end of 2010.In
he same mann

The NIST has
function, SHA
derived from S

Examples of S

1. SHA2
0x
d14a028c2a3a
c5b3e42f
2. SHA2
0x
e3b0c44298fc
495991b7852b
3. SHA3

earch (IJSR

ion CC BY

three addition
lgorithms are
heir digest len
A-512. The u
-1[1, 4] algo
stent with tha

2 family. Spe
fined to matc

The standard w
SHA-224 fr

king no fundam
motivation fo
urity informat
ndations for th

800-57.Deta
sts were also r

separate do
IPS PUB 180
and SHA-512

g initial valu
ditionally, a r

hash calculatio
calculated s

uch as a rea
inal data block

on disallows
ecurity lower
ion from 200
n August 201
ner.

sh function co
A-3, in 2012
SHA-2.

SHA-2[6, 9] v

224("")

a2bc9476102b

256("")

1c149afbf4c8
b855
384("")

R)

nal hash funct
collectively k

ngths (in bits):
updated stand

orithm, with u
at describing th
ecifying an a
ch the key le
was updated in
rom the cha
mental change

for updating t
tion about the
heir use to Sp
ailed test da
removed from
cuments. Th

0-4, adding th
2/256, and des
ues for trunc
restriction on
on was remov
simultaneousl
al-time video
k must still oc

creation of
than 112-bit

7 specified th
2, NIST revis

ompetition sel
.The SHA-3

ariants

bb288234c415

8996fb92427a

tions in the S
known as SHA
: SHA-256, SH
dard included
updated techn
he inner work

additional var
ength of two
n FIPS PUB
ange notice,
es to the stand
the standard
e hash algorit
ecial Publicat

ata and exam
m the standard,
he standard
he hash funct
scribing a met

cated versions
padding the in

ved, allowing h
ly with con
o or audio f
ccur prior to h

digital signat
s after 2013.

he cutoff to be
sed SP800-10

lected a new h
algorithm is

5a2b01f828ea

ae41e4649b93

SHA
A-2,
HA-

d the
nical
kings
riant,
-key
180-

but
dard.
was

thms
tions
mple
 and
was

tions
thod
s of
nput
hash
ntent
feed.
hash

tures
The

e the
07 in

hash
not

a62a

4ca

Paper ID: 020148 480

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

0x
38b060a751ac96384cd9327eb1b1e36a21fdb71114be0743
4c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b
4. SHA512("")
cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc
83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f6
3b931bd47417a81a538327af927da3e
5. SHA512/224("")
0x
6ed0dd02806fa89e25de060c19d3ac86cabb87d6a0ddd05c
333b84f4
6. SHA512/256("")
0x
c672b8d1ef56ed28ab87c3622c5114069bdd3ad7b8f97374
98d0c01ecef0967a

Pseudocode
Pseudocode for the SHA-256 algorithm follows:
Note 1: All variables are 32 bit unsigned integers and
addition is calculated modulo 232
Note 2: For each round, there is one round constant k[i]
and one entry in the message schedule array w[i], 0 ≤ i ≤
63
Note 3: The compression function uses 8 working
variables, a through h
Note 4: Big-endian convention is used when expressing
the constants in this pseudo code,
and when parsing message block data from bytes to
words, for example,
the first word of the input message "abc" after padding is
0x61626380

Step 1: Initialize hash values:

First 32 bits of the fractional parts of the square roots of
the first 8 primes 2...19

Step 2:
Initialize array of round constants:
First 32 bits of the fractional parts of the cube roots of the
first 64 primes 2...311

Step 3:
Pre-processing:
Append the bit '1' to the message
Append k bits '0', where k is the minimum number >= 0
such that the resulting message
Length (modulo 512 in bits) is 448.
Append length of message (without the '1' bit or padding),
in bits, as 64-bit big-endian integer
(This will make the entire post-processed length a
multiple of 512 bits)

Step 4:
Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
create a 64-entry message schedule array w[0..63] of 32-
bit words

Step 5:
Extend the first 16 words into the remaining 48 words
w[16..63] of the message schedule array:
for i from 16 to 63
s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18)
xor (w[i-15] rightshift 3)
s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor
(w[i-2] rightshift 10)
w[i] := w[i-16] + s0 + w[i-7] + s1

Step 6:
Initialize working variables to current hash value

Compression function main loop:
for i from 0 to 63
S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e
rightrotate 25)
ch := (e and f) xor ((not e) and g)
temp1 := h + S1 + ch + k[i] + w[i]
S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a
rightrotate 22)
maj := (a and b) xor (a and c) xor (b and c)
temp2 := S0 + maj

h := g
g := f
f := e
e := d + temp1
d := c
c := b
b := a
a := temp1 + temp2

Step 7:
Add the compressed chunk to the current hash value

Step 8:
Produce the final hash value (big-endian):
digest := hash := h0 append h1 append h2 append h3
append h4 append h5 append h6 append h7

SHA-224 is identical to SHA-256[11], except that:
• The initial hash values h0 through h7 are different, and
• The output is constructed by omitting h7.

Paper ID: 020148 481

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1.4 Comparison of Different SHA Functions

Algorithm and
variant

Output
size (bits)

Internal state
size (bits)

Block
size

(bits)

Max message
size (bits)

Word
size

(bits)

Rounds Bitwise
operations

Collisions
found

Example
Performance

(MiB/s)
MD5 (as reference) 128 128 512 264 − 1 32 64 and, or, xor,

rot
Yes 335

SHA-0 160 160 512 264 − 1 32 80 and, or, xor,
rot

Yes -

SHA-1 160 160 512 264 − 1 32 80 and, or, xor,
rot

Theoretical
attack

192

SHA-
2

SHA-224
SHA-256

224
256

256 512 264 − 1 32 64 and, or, xor,
shr, rot

None 139

SHA-384
SHA-512
SHA-
512/224
SHA-
512/256

384
512
224
256

512 1024 2128 − 1 64 80 and, or, xor,
shr, rot

None 154

1.5 Proposed Work

This research paper consists of comparisons between
different secure hashing algorithms. Each algorithm takes
the time for the computation of hash value. By computing
the time required from each of these algorithm and finding
the algorithm which will require the less amount of time
for computation of the hash value we can combine the
best secure hashing algorithm with network security
algorithm so as to increase the security of the data being
sent.

References

[1] http://csrc.nist.gov/publications/fips/fips180-4/fips-

180-4.pdf
[2] Schneier on Security: Cryptanalysis of SHA-1
[3] "Crypto++ 5.6.0 Benchmarks". Retrieved 2013-06-

13.
[4] "Cryptanalysis of MD5 & SHA-1" (PDF).
[5] "Collisions for 72-step and 73-step SHA-1:

Improvements in the Method of Characteristics".
[6] "SHA-1 Collision Search Graz".
[7] SHA-1 hash function under pressure – heise Security
[8] Classification and Generation of Disturbance Vectors

for Collision Attacks against SHA-1
[9] Cryptanalysis of MD5 & SHA-1
[10] Henri Gilbert, Helena Handschuh: Security Analysis

of SHA-256 and Sisters. Selected Areas in
cryptography 2003

[11] http://www.unixwiz.net/techtips/iguide-crypto-
hashes.html

About Author

Priyanka Vadhera has obtained her B.Tech degree from
Maharishi Dayanand University in 2012. She is also perusing
M.Tech degree from Maharishi Dayanand University, Rohtak.
Her areas of interest are wireless security, networking and signal
processing.

Bhumika Lall has obtained her B.Tech and M. tech degree. She
is working as Assistant Professor in B. S. Anangpuria Institute of
Technology and Management affiliated to Maharishi Dayanand
University, Rohtak. Her areas of interest are wireless security,
networking and signal processing.

Paper ID: 020148 482

