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Abstract: SHA stands for "secure hash algorithm". The four SHA algorithms are structured differently and are named SHA-0, SHA-
1, SHA-2, and SHA-3. Secure hashing algorithm is a method that produces a message digest based on principles similar to those used in 
the design of the MD4 and MD5message digest algorithms, but has a more conservative design.SHA appears to provide greater 
resistance to attacks, supporting the NSA’s assertion that the change increased the security. This is a review paper which includes the 
comparisons between different secure hashing algorithms. 
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1. Introduction 
 
Cryptographic hash functions have many information 
security applications, notably in digital signatures, 
message authentication codes (MACs), and other forms of 
authentication. They can also be used as ordinary hash 
functions, to index data in hash tables, for fingerprinting, 
to detect duplicate data or uniquely identify files, and as 
checksums to detect accidental data corruption. Indeed, in 
information security contexts, cryptographic hash values 
are sometimes called (digital) finger prints, checksums, or 
just hash values, even though all these terms stand for 
more general functions with rather different properties and 
purposes. 
 
A cryptographic hash function is a hash function that takes 
an arbitrary block of data and returns a fixed-size bit 
string, the cryptographic hash value, such that any 
(accidental or intentional) change to the data will (with 
very high probability) change the hash value. The data to 
be encoded are often called the message, and the hash 
value is sometimes called the message digest or simply 
digests. 
 
The methods resemble the block cipher modes of 
operation usually used for encryption. All well-known 
hash functions, including MD4, MD5, SHA-1 and SHA-2 
are built from block-cipher-like components designed for 
the purpose, with feedback to ensure that the resulting 
function is not invertible. SHA-3 finalists included 
functions with block-cipher-like components though the 
function finally selected, was built on a cryptographic 
sponge instead. 
 
A standard block cipher such as AES can be used in place 
of these custom block ciphers; that might be useful when 
an embedded system needs to implement both encryption 
and hashing with minimal code size or hardware area. 
However, that approach can have costs in efficiency and 
security. The ciphers in hash functions are built for 
hashing: they use large keys and blocks, can efficiently 
change keys every block, and have been designed and 
vetted for resistance to related-key attacks. General-
purpose ciphers tend to have different design goals. In 

particular, AES has key and block sizes that make it 
nontrivial to use to generate long hash values; AES 
encryption becomes less efficient when the key changes 
each block; and related-key attacks make it potentially 
less secure for use in a hash function than for encryption. 
 
1.1 SHA-0 
 
A retronym applied to the original version of the 160-bit 
hash function published in 1993 under the name "SHA". It 
was withdrawn shortly after publication due to an 
undisclosed "significant flaw" and replaced by the slightly 
revised version SHA-1. 
 
1.2 SHA-1 
 
SHA-0 is the original version of the 160-bit hash function 
SHA-1 is very similar to SHA-0, but alters the original 
SHA hash specification to correct alleged weaknesses. 
SHA-1[1, 5] is the most widely used of the existing SHA 
hash functions, and is employed in several widely used 
applications and protocols. 
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0x 
38b060a751ac96384cd9327eb1b1e36a21fdb71114be0743
4c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b 
4. SHA512("") 
cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc
83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f6
3b931bd47417a81a538327af927da3e 
5. SHA512/224("") 
0x 
6ed0dd02806fa89e25de060c19d3ac86cabb87d6a0ddd05c
333b84f4 
6. SHA512/256("") 
0x 
c672b8d1ef56ed28ab87c3622c5114069bdd3ad7b8f97374
98d0c01ecef0967a 
 
Pseudocode 
Pseudocode for the SHA-256 algorithm follows:  
Note 1: All variables are 32 bit unsigned integers and 
addition is calculated modulo 232 
Note 2: For each round, there is one round constant k[i] 
and one entry in the message schedule array w[i], 0 ≤ i ≤ 
63 
Note 3: The compression function uses 8 working 
variables, a through h 
Note 4: Big-endian convention is used when expressing 
the constants in this pseudo code, 
and when parsing message block data from bytes to 
words, for example, 
the first word of the input message "abc" after padding is 
0x61626380 
 
Step 1: Initialize hash values: 
 
First 32 bits of the fractional parts of the square roots of 
the first 8 primes 2...19 
 
Step 2: 
Initialize array of round constants: 
First 32 bits of the fractional parts of the cube roots of the 
first 64 primes 2...311 
 
Step 3: 
Pre-processing: 
Append the bit '1' to the message 
Append k bits '0', where k is the minimum number >= 0 
such that the resulting message 
Length (modulo 512 in bits) is 448. 
Append length of message (without the '1' bit or padding), 
in bits, as 64-bit big-endian integer 
(This will make the entire post-processed length a 
multiple of 512 bits) 

Step 4: 
Process the message in successive 512-bit chunks: 
break message into 512-bit chunks 
for each chunk 
create a 64-entry message schedule array w[0..63] of 32-
bit words 
 
Step 5:  
Extend the first 16 words into the remaining 48 words 
w[16..63] of the message schedule array: 
for i from 16 to 63 
s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) 
xor (w[i-15] rightshift 3) 
s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor 
(w[i-2] rightshift 10) 
w[i] := w[i-16] + s0 + w[i-7] + s1 
 
Step 6: 
Initialize working variables to current hash value 
 
Compression function main loop: 
for i from 0 to 63 
S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e 
rightrotate 25) 
ch := (e and f) xor ((not e) and g) 
temp1 := h + S1 + ch + k[i] + w[i] 
S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a 
rightrotate 22) 
maj := (a and b) xor (a and c) xor (b and c) 
temp2 := S0 + maj 
  
h := g 
g := f 
f := e 
e := d + temp1 
d := c 
c := b 
b := a 
a := temp1 + temp2 
 
Step 7: 
Add the compressed chunk to the current hash value 
 
Step 8: 
Produce the final hash value (big-endian): 
digest := hash := h0 append h1 append h2 append h3 
append h4 append h5 append h6 append h7 
 
SHA-224 is identical to SHA-256[11], except that: 
• The initial hash values h0 through h7 are different, and 
• The output is constructed by omitting h7. 
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1.4 Comparison of Different SHA Functions 
 

Algorithm and 
variant 

Output
size (bits) 

Internal state 
size (bits) 

Block
size

(bits) 

Max message 
size (bits) 

Word 
size

(bits) 

Rounds Bitwise
operations

Collisions
found 

Example 
Performance 

(MiB/s)
MD5 (as reference) 128 128 512 264 − 1 32 64 and, or, xor, 

rot 
Yes 335 

SHA-0 160 160 512 264 − 1 32 80 and, or, xor, 
rot 

Yes - 

SHA-1 160 160 512 264 − 1 32 80 and, or, xor, 
rot 

Theoretical 
attack 

192 

SHA-
2 

SHA-224 
SHA-256 

224 
256 

256 512 264 − 1 32 64 and, or, xor, 
shr, rot 

None 139 

SHA-384 
SHA-512 
SHA-
512/224 
SHA-
512/256 

384 
512 
224 
256 

512 1024 2128 − 1 64 80 and, or, xor, 
shr, rot 

None 154 

1.5 Proposed Work 
 
This research paper consists of comparisons between 
different secure hashing algorithms. Each algorithm takes 
the time for the computation of hash value. By computing 
the time required from each of these algorithm and finding 
the algorithm which will require the less amount of time 
for computation of the hash value we can combine the 
best secure hashing algorithm with network security 
algorithm so as to increase the security of the data being 
sent. 
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