
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Table Driven Dynamic Load Balancing Scheme
for Distributed System

Antim Panghal1, A.K Sharma2

1M. Tech student B.S.A.I.T.M Faridabad, Haryana, India

2P.G Dean of Research B.S.A.I.T.M Faridabad, Haryana, India

Abstract: In a distributed network of different computing hosts, the performance of the distributed system depends on how the work is
efficiently divided among all the participating nodes. Load balancing is an important activity wherein tasks are assigned to participating
nodes with a view to minimize the waiting time and bring improvement in execution time of the system. The existing load balancing
techniques consider each participating node having equal computing capability .In this work we propose a load distribution algorithm
for a cluster of heterogeneous commodity hardware. The algorithm considers the nature of applications at hand before allocating the
computing resources. A considerable improvement in execution time of parallel applications has been observed especially when tasks
are sent and processed on favorable nodes instead of randomly assigned nodes.

Keywords: Dynamic load balancing, Distributed system, Distributed Algorithm, data-intensive task, computation intensive task.

1. Introduction

A distributed System is a collection of nodes that cooperate
and coordinate with each other to achieve a common goal of
efficient utilization of computing power. Therefore a CPU
becomes the most important resource which is shared
between the participating nodes of the distributed system.
One of the important mechanisms for utilizing and sharing
the CPUs optimally is the policy of balancing the load
amongst the nodes. This type of load balancing can be
achieved by transferring some of the tasks from a heavily
loaded node to lightly loaded node . The possibility of
transferring a task arises either when the processing time for
a task in a processor is expected to be larger than that of
another remote processor, or when the imbalance of
workload at various processors is sufficiently larger. The
load balancing improves the performance of the system by
using the processing power of the entire system more
effectively.

Load balancing algorithms may either be static or dynamic,
depending upon the rules they follow. In static load
balancing algorithms, on the basis of the time needed to
complete any task, tasks are assigned to processors during
the compile time and their relation is determined. No
decision is taken regarding shifting of a task from one
processor to another during the execution time. But in
dynamic load balancing algorithms load status at any given
moment is used for taking us to which task is to be shifted
from one processor to another. Load balancing algorithms
mainly depend upon four components (1) transfer policy (2)
location policy (3) selection policy (4) information policy. In
this work location policy is being constructed. According to
location policy decentralized algorithm is categorized into
sender-initiated algorithm, receiver-initiated algorithm and
symmetrically-initiated algorithm [4].

Emerging application in the field of Science, Engineering
and commerce require intensive computations as well as
storage and analysis of huge amount of data. Since last few
years, primary attention was to maximize CPU cycle per

second which result in exponential increase in clock speed
of uni-processor CPUs. Multicore processor architecture
further improved computing performance by adding more
than one core as an independent processing element on same
die. In addition to computation-intensive requirements,
today’s scientific and commercial application need
performing computation over large datasets typically
ranging from tens to hundreds of gigabytes or terabytes.
Moreover these applications require dynamic scalable
solution for data-intensive computing. In this paper, we
propose algorithm for solving data-intensive and
computation-intensive problems based on individual
capability of nodes.

2. Related Work

Various approaches for balancing the load has been
described in the literature, Ni et al.[11] have described a
mechanism for a homogeneous distributed system where
every node maintains a load table containing the states of
neighboring nodes. In [5] two algorithms based on Source
and Destination have been compared .The source based
algorithm called “Sender-Initiated Algorithm” identifies an
over-loaded sender nodes which take the initiative to request
the under-loaded nodes (receiver) to receive the job. The
destination based algorithm called “Receiver-Initiate
Algorithm” identifies the under-loaded receiver nodes which
take the initiative to invite tightly loaded nodes to send their
job. The result suggests that if the system is lightly loaded,
the sender –initiated policy is better as compared to receiver-
initiated policy. The receiver-initiative policy is better in
case of heavily loaded system. Similar conclusion has been
drawn by Y. Wang and R.J.T. Morrisin [13].

Another algorithm described in the literature determines the
optimal load of a Heterogeneous distributed system
[12].This algorithm is also static in the sense that the
decision regarding transfer of task does not depend on the
system state. If required, the node may transfer some of its
task to a selected node. However a task thus transferred will

Paper ID: 0201474 538

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

cause a communication delay as well as queuing delay at the
node so selected.

Krueger and Finkel [1] have suggested an algorithm called
“Above-Average Algorithm”. The transfer policy of this
algorithm broadcasts messages to achieve consensus about
average load in the network across machines that are over
and under-loaded. There by algorithm maintaining the load
at each node within an acceptable range of the system
average. Its location policy has following two components:
(1) Sender-Initiated components, in which a sender node
broadcast a Too High message and set a Too High timeout
alarm. Thereafter listen for an accept message from other
nodes until the time out expire (2) Receiver-Initiated
component, in which a node ,on becoming a receiver
,broadcast a Too Low message ,set a Too Low timeout
alarm. Thereafter start listing for a Too High message.

Dynamic load balancing algorithms developed by a number
of authors considered each participating nodes as having
equal computing capability [15][16]. A critical look at the
available literature indicates that the above discussed
algorithms, in general broadcast the large number of
messages for load distribution across the distributed system
and considered each participating nodes as having equal
computing capability.

In this paper, we propose a load distributing algorithm
wherein load is distributed among the participating nodes
that depends upon the nature of the application whether it is
computation-intensive or data intensive and analyzes the
computing power of individual nodes which will improve
the execution performance of the system.

3. Proposed Work

The proposed method divides the task at hand into two
categories, computation-intensive and data intensive [17].
The computation intensive problem requires more CPU
cycles than memory usage whereas Data-intensive problem
requires more memory usage and data transfer than CPU
cycle. Therefore for efficient utilization of resources in
network of workstations, depending upon the hardware
attributes the participating nodes of the network are divided
into two clusters: computation-intensive and data-intensive
clusters of workstations. Consequently, the system
distributes the load to the appropriate cluster depending
upon the type of the tasks at hand being computation
intensive or data intensive. In fact the load is distributed
towards the best supporting group of workstation for
efficient use of resources.

In this work, a teach node a table called load Tab is
maintained as shown in table1. The table contains the
information about the participating nodes in terms of their
group type and current load.

Table1. Sample of two separate groups for different nature
of problems

Node No. Group Id. Current load
1 G11 0
2 G21 1
3 G22 2
4 G12 2
5 G23 4
6 G13 3
7 G14 3
8 G24 5

Since a task (T) can be of two types. Let us define a tag
called Load type to represent the type of the task i.e. ‘load
type’ can assume values 0 and 1 for computation-intensive
and data-intensive task respectively. The algorithm that
distributes the tasks in the distributing environment is given
below. In this algorithm, a variable called disk flag is being
used that indicates whether a task at hand has been
distributed or not depending upon the information returned
by diskflagi.e. 0 or 1.

Algorithm distributeGroup(loadType,T)
{
int i=0,j=0, diskflag=0;
if(loadType(T)= = 0)
{ //computation –intensive problem
while((diskflag = = 0)&&(i<=m))
{
i++
diskflag= distload(T,G1i)// ith node of group G1
}
}
else
{// data-intensive problem
while((diskflag==0)&&(j<=n))
{
j++
diskflag= distload(T,G2j) // jth node of group G2
}
}
}

It may be noted that the above algorithm uses a function
called distload(). A detailed discussion on the working of its
algorithm is given below.

For the purpose of distribution of load the proposed
mechanism computes the average load of a group of nodes
and thereafter based on, following the location and transfer
policies the task are distributed.

Transfer policy: The transfer policy [1] is a threshold
policy that uses two adaptive thresholds called lower
threshold and upper threshold. These thresholds are
equidistant from the node’s estimate of the average load
across all nodes. For example, if a node’s estimate of
average load is 3, then the lower threshold=1 and upper
threshold=5.The current work load is the load at a given
time of a ready process in the system.

Now, a node whose current load is less than the lower
threshold is considered as receiver, whereas the node whose
current load is greater than the upper threshold is considered

Paper ID: 0201474 539

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

as sender. Nodes that contain the current loads between
these threshold lie within the acceptable range, so they are
considered neither sender nor receivers nodes.

Location policy: A node computes its current load
information with the help of the load table, and classifies
itself as a sender or a receiver. Thereafter the locations of
other sender/receiver nodes are identified as per the
procedure given below.

(1) Sender node
As soon as a task arrives, the sender node (a node whose
current load greater than the upper threshold) searches
for a possible receiver node in the network by consulting
information contained in its load table. If a receiver is
found then the sender node sends the task to the same.
On receiving the task the receiver node broadcast a
message to all participating nodes about its current load
.Thereafter all nodes update their load table accordingly.

(2) Receiver node
As soon as a task arrives the Receiver node (a node
whose current load is less than the lower threshold)
receives the task. After receiving the task the receiver
node broadcast a message to all participating nodes about
its current load .Thereafter all nodes update their load
table accordingly.

The algorithmic detail of the function distload() is given
below:
Let a task T arrives at a node N. Let LT and UT represents
lower and upper threshold values , RN and SN represents
sender and receiver nodes , proc Ready is a queue in which
all ready process are placed for execution.

Algorithmintdistload(T,N)
{
while(1)
{
if(load(N)<LT)
nodeType=RN
elseif(load(N)>UT)
nodeType=SN
else
return0
if(nodeType==RN)
{
placeT onprocReady queue.
broadcast update(message)
return1
 }
else
{
RN=findReceiver(loadtable)
distload(T,RN)
return1
 }
}
}
findReceiver(loadtable) // It finds a receiver node by
consulting information contained in load table of the node in
question.

Example: Let us computes the following terms for the data
given in table 1.

1. Average load of G1=(0+2+3+3)/4=2
2. Lower threshold of G1=1
3. Upper threshold of G2=3
4. Average load of G2=(1+2+4+5)/4=3
5. Lower threshold of G2=1
6. Upper threshold of G2=5

The network of nodes consists of N(say 8) nodes wherein
N/2(say4) nodes belong to group G1 and N/2(say4) nodes
belong to G2. We know that in a distributed system as soon
as a new task joins the system it can execute equally well on
any node of its group type, independent of the node where it
has joined. Suppose a new task T whose work load=1and
loadtype =0arrives at node 1. Thereafter the node 1 consults
its loadtaband finds the following:

1. The type of task is same as its own type.
2. It accepts the arrived task because its load is less than the

upper threshold.
3. The current load of node 1 is within the range of system

average.
4. The current load of node 1 after receiving the new task is

l, which is also within acceptable range.
5. The task is placed in the ready queue of node1.

Accordingly ,the loadtab is updated as shown in table2.

Table 2
Node No. Group Id. Current load

1 G11 1
2 G21 1
3 G22 2
4 G12 2
5 G23 4
6 G13 3
7 G14 3
8 G24 5

Similarly let us consider a new task whose current
load=2and loadtype=1 arrives at node 3. Thereafter the node
3 consults its loadtab and finds the following:
1. The type of task is same as its own type.
2. It accepts the arrived task because its load is less than the

upperthreshold.
3. The current load of node 3 is within the range of system

average.
4. The current load of node 3 after receiving the new task is

4, which is also within acceptable range.
5. The task is placed in the ready queue of node3.

Accordingly the loadtab is updated as shown in table3.

Table 3
Node No. Group Id. Current load

1 G11 1
2 G21 1
3 G22 4
4 G12 2
5 G23 4
6 G13 3
7 G14 3
8 G24 5

Paper ID: 0201474 540

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Kindly note that each time a task arrives the existing system
broadcasts messages to gather the information about various
nodes of the network for possible distribution of load. This
reoccurring wastage of time of broadcasting the message has
been saved by the proposed method. It uses an eager strategy
to collect the information of load of various nodes and store
it into a load table called ‘loadtab’. Thereafter the table is
updated only when the load conditions of a node change
which is a very less frequent activity. Hence forth a node
searches the potential sender or receiver nodes merely by
consulting its load table instead of broadcasting messages.
However the distribution of task within a group further
improves the execution time.

4. Conclusion

In this work a group specific dynamic load balancing
method has been proposed that maintains a load table at
each node. The potential nodes for load distribution are
identified by consulting its load table and not by
broadcasting messages .Thereby reducing the network
congestion. The distribution of task with in a group further
improves the execution time.

References

[1] Krueger,P., and R.Finkel, “Adaptive Load Balancing
Algorithm for a Multicomputer”, Technical Report
539,University of Wisconsin-Madison,Apr.1984

[2] Urjashree Patil, and Raja Shree Shedge, ”Improve
Hybrid Dynamic Load Balancing Algorithm For
Distributed Environment”, International Journal of
Scientific and Research Publication ,Volume
3,issuse3,March 2013.

[3] Ankush P. Deshmukh and Prof. Kumar swamy Pamu,
”Applying Load Balancing: A Dynamic Approach”,
International Journal of Advance Research in Computer
Science and Software Engineering “,Volume 2,issue
6,June 2012.

[4] PrakashKumar,Pradeep Kumar and VikasKumar,”An
Effective Dynamic Load Balancing Algorithm for Grid
System”, International Journal of Engineering and
Technology ,Volume 4,issues 8,August 2013.

[5] D.L.Eager et al .,”A comparision of receiver-initiated
and sender-initiated adaptive load sharing”,
performance evaluation 6(1986) 53-68.

[6] Ali M.Alakeel,”A Guide to Dynamic Load Balancing in
Distributed Computer System “, International Journal of
Computer Science and Network Security, Volume
10.No. 6,june 2010

[7] ToufikTaibi, AbdelouahabAbid, Engku Fariez Engku
Azahan ,"A Comparison of Dynamic load Balancing
Algorithms", J.J Appl. Science, Volume 9, Issue 2,
2007.

[8] Eager,D.L.,D.Lazowska, and J.Zahorjan,”adaptive load
sharing in homogeneous Dynamic load Balancing
Algorithms", J.J Appl. Science, Volume 9, Issue 2,
2007.

[9] Shivaratri,N.G.,andP. Krueger, “Two Adaptive
Location Policies for Global Scheduling ,”proceedings
of the 10th international conference on distributed
computing system,May 1990,pp.502-509

[10] Krueger,P.,and M.Livny,”The Diverse Objectives of
Distributed Scheduling Policies,’proceeding of the 7th

International Conference on Distributed Computing
System,Sept.1987,pp.242-249.

[11] L.M. Ni et al.,“ A distributed drafting algorithm for load
balancing”, IEEE Trans. Software Enginrg. SE-11 (10)
(1985) 1153-1161.

[12] A.N. Tantawi and D. Towsley,“ Optimal load balancing
in distributed computing system”, J. Assoc. Comput.
Ma-chinery 32 (1985) 445-465.

[13] Y. Wang and R.J.T. Morris, “Load sharing in
distributed system”, IEEE Trans. Comput. C-34, (3)
(1985) 204-217.

[14] Harshal Khandre ,Prof. Manasi Kulkarni, “ A New
Approach for Dynamic Load Balancing Algorithm”,
International Journal of

[15] Advance Research in Computer Engineering and
Technology ,Volume 2,issues 6,june 2013.

[16] MaisNijim ,TaoXie ,Xiao Qin, “Performance Analysis
of an Admission Controller for CPU and I/O Intensive
Application in

[17] self Managing Computer System ,” ACM Operating
system review ,Vol .39 ,No.4,2005,

[18] Pushpender Chandra, Bibhudatta Sahoo, “A Novel Load
Balancing Algorithm for I/O Intensive Load in
Heterogeneous Cluster,” International Conference on
Advance in Computing, February 2008.

[19] Rajkumar Sharma, Dr. Priyesh Kanungo “Dynamic
Load Balancing in Network of Workstations of
Different Computing Power. ”ph.D. Thesis, Devi ahilya
vishwavidyalaya, Indore.

[20] HarshalKhandre ,Prof.ManasiKulkarni,” A New
Approach for Dynamic Load Balancing Algorithm”,
International Journal of Advance Research in Computer
Engineering and Technology ,Volume 2,issues 6,june
2013

Paper ID: 0201474 541

