
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Implementation of Core-Lock mechanism as a Data
Synchronization Method in Embedded Multi-core

Systems

Megha .S1, Dr. C R Byrareddy2

1M.Tech in VLSI Design and Embedded Systems, Bangalore Institute of Technology,
 Bangalore, Karnataka, India

2Associate Professor, Dept of ECE, Bangalore Institute of Technology, Bangalore, Karnataka, India

Abstract: Multi-core processors have become prevalent in the embedded systems for High-performance computations especially in the
high-end digital applications. One of the major challenges in multi-core system is Data synchronization which facilitates the
simultaneous execution of multiple threads in the same processor environment. Traditional methods solved the Data Synchronization
issues using Lock based methods like semaphores or mutual exclusion of critical data. More advanced methods use transactional
memory to achieve the same purpose. But there are advantages and disadvantages in both methods. So we propose a mechanism which
exploits advantages of Traditional Lock based methods and evolving transactional memory methods. This Hybrid method will be termed
as Core Locking (C-Lock) which is performance and energy efficient. C-Lock allows parallelism by detecting true conflicts and disables
the clocks of the idle cores thereby minimizing the dynamic power consumption. This paper aims to implement the C-Lock manager
using Verilog HDL, simulated using Cadence ncsim and synthesized using Cadence RTL compiler.

Keywords: Multi-core, Data Synchronization, embedded systems, energy, performance, Transaction memory (TM).

1. Introduction

Innovations in semiconductor technology have led to
evolution of processor architectures to enhance computation
power and performance and also have managed to reduce the
size of the processor chip by scaling. In accordance with
Moore’s law, this has resulted in chip speeds to rise and
prices to drop. As the transistor components grow thinner,
chip manufacturers have struggled to limit power usage and
heat generation. Even performance enhancing approaches
like running multiple instructions per thread have aged out.
Due to this, the performance of the chip is falling short of
meeting the application demands. In response, manufacturers
are building chips with multiple energy-efficient processing
cores instead of single powerful core [1][2].

1.1 Multi-core Processors

A multi-core processor is the technology that chip
manufacturers are focusing on. The Multi-core chips don’t
necessarily run as fast as the highest performing single-core
model, but they improve overall performance by handling
more work in parallel, as shown in Fig1.

Figure 1: Performance of single and Multicore processors

However, adding more processing cores does not necessarily
lead to a predictable gain in system performance due to the
limited parallelism of real world programs. It also introduces
many challenging problems in data handling and
communication between processing cores and memory while
multi-tasking [5][6]. Data synchronization is one of the main
issues that must be addressed while dealing with any Multi-
core systems.

1.2 Data Synchronization

Data Synchronization issues are related to Avoiding
Conflicts in Resource access, Create Sequence of Operation,
communicating between Processes when multiple tasks
execute simultaneously. So when Data Synchronization is
targeted, the objectives will be to overcome the issues like
Task Co-Operation and Communication, Eliminating
Competition for shared resource, Defining methods to access
shared resource, Protecting Critical section Objects.

The data synchronization techniques which were originally
developed for general purpose systems cannot be transferred
directly into the embedded world since they do not take the
nature of embedded systems in sufficient consideration:
these include stringent requirements for low energy
consumption as well as high performance.

1.3 Data Synchronization Methods

Traditional Data synchronization methods used Locking of
Critical Section resource to protect shared memory areas.
These methods included Semaphores and Mutual exclusions
and went well when the complexity of applications was less
demanding and there were no hard real time constraints to be
met. With evolving complexity the methods aimed at data

Paper ID: 02014729 2425

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

synchronization also evolved to use Transactional memory
approaches to provide Lock Free mechanisms. This is still
evolving to meet the present day challenges. So there are
methods which exploit advantages of Lock based and TM
approaches to meet the application requirements. These
methods use the main advantages of embedded system that
applications can be implemented by Hardware architectures
or Software based algorithms or a mixture of both.

2. Previous Works to Resolve Data

Synchronization Issues

2.1 Lock-based Approach

1. Speculative Lock Elision (SLE)

This is a hardware-based approach which elides the
unnecessary lock-induced serialization from dynamic
execution stream [4].

2. Transactional Lock Removal (TLR)
This also uses hardware to convert lock-based critical
sections transparently and dynamically into lock-free
optimistic transactions [2][3].

3. Synchronization-operation Buffer (SB)
This monitors the shared variable and, if it is changed,
notifies the processor of the change so that the processors
energy- and bandwidth consuming polling operation can
be avoided. This uses Software application to control
hardware resource [11].

Lock based schemes share the drawback of being overly
conservative in their exploitation of parallelism. They
operate at Process level and use scheduling algorithms.
For this reason, a process cannot simultaneously run on
two shared data elements if it has already requested a lock
for one of them. To counter this problem, an identifier
should be given to each shared data element rather than to
a process, at the cost of increased programming
complexity and increased delay in execution.

2.2 Lock-free or Transactional Memory (TM) Approach

TM provides sufficient programmability to the programmers
by abstracting the details of the synchronization.
Consequently, the programmers rather focus on the
functionality. Even though TM simplifies the programming
model and maximizes concurrency, transactions may suffer
from interference which causes them to abort and from
heavy overheads for memory accesses.
1. Embedded-TM

This aims at balancing energy efficiency and simplicity in
an embedded system. However, the energy efficiency of
TM strongly depends on the accuracy of the speculation.
However, when the speculation is wrong, it consumes
non-negligible energy for the associated transaction abort
and restart [12][13].

2. Shutdown method
They dynamically turned off a processor by gating all its
clocks, whenever any transaction running on the processor
is aborted. TM has an advantage over locks in terms of
energy consumption, but that this advantage largely

depends on the architecture of the system, the contention
level, and the conflict resolution policy [14].

2.3 Hybrid Approach

Hybrid approach combines the merits of both lock and TM.
1. Adaptive locks

This is a hybrid method which dynamically selects TM or
a mutex lock to improve performance. However, it only
focuses on improving program execution time. That is,
the system that allows speculative execution may cause a
power consuming rollback operation. In addition, there is
no power saving mechanism for the processors waiting
for the execution of a critical section [15]. To summarize,
the traditional lock-based schemes are inadequate from a
performance perspective, while TM methods are not well
designed from an energy perspective. For these reasons,
it is necessary to design a data synchronization method
which exploits the advantages of both methods. This
paper discusses a Data Synchronization method called C-
lock which is a performance and energy efficient method
in Embedded Multi-core systems.

3. C-Lock Mechanism

C-Lock is a Hybrid approach that combines the advantages
of both lock-based and lock-free methods for Data
synchronization in Multi-core systems. The main aim of the
C-Lock system is to exploit available parallelism by
detecting true conflicts and to minimize the dynamic power
consumption with clock gating for the idle cores. C-Lock
detects conflicts using address ranges from different cores
that wish to access the memory.

3.1 Concept of C-Lock mechanism

Figure 2: C-Lock mechanism

Fig2 shows how the address range is used for detecting true
dependencies so as to decide whether to execute or hold the
operation. If the cores are accessing different address regions
of the memory, then the C-Lock detects no conflicts and thus
all the cores can perform operation simultaneously. This is
similar to TM operation. However, if the address range
overlaps between different cores then the conflict exists and
hence the system allows only one access at a time.
Meanwhile, the cores without access permission move into
the clock-gated state thereby reducing the dynamic power

Paper ID: 02014729 2426

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

consumption. In this way, C-Lock yields higher energy
efficiency than TM and provides higher performance than
Lock.

Fig2 shows the concept of C-Lock Mechanism. Before the
execution of the critical section, every core sends the address
range to be accessed; Addr range0 to Addr range3. After
that, the centralized peripheral C-Lock Manager decides
whether the ranges overlap or not. If there is an overlap, only
one among the cores that cause conflict is permitted to run
while the others are stalled with clock gating until the former
ends the execution.

Figure 3: Top-level architecture of C-Lock

Fig shows the top-level architecture of C-Lock that consists
of 4 cores, memory, C-Lock manager consisting of dedicated
pools for each core and a bus for communication between
core and memory.

3.2 Modification from the traditional lock scheme

Hardware side: C-Lock Manager is the key component of
C-Lock which is in charge of detecting true conflicts among
the accesses to the shared data, and controlling clock-gating
of the cores.

Software side: Each core is in charge of setting the
necessary information to C-Lock Manager, which includes
base address, size, and type of the data it intends to access.
When this information is set, the core is allowed to attempt
its atomic operation by notifying C-Lock Manager.

3.3 Implementation of C-Lock Manager

In this paper, we assume that there are 4 cores in the
processor and each core can record 4 items with the C-Lock
Manager. Item is a storage element that contains access
information for checking the conflicts. Each Item consists of
following fields:
1. Base address
2. Access Size
3. Read/Write operation
4. gIdx- Global Index for conflict detection.
5. Valid field

The internal architecture of C-Lock Manager consists of 4
pools for a dedicated core, an arbiter, a global counter, 4
item buses and signals for detecting conflicts.

Figure 4: Internal architecture of C-Lock Manager

Arbiter:

A memory arbiter is a device used in a shared
memory system to decide, for each memory cycle, which
core will be allowed to access that shared memory. Arbiter
can inspect the possible deadlock. When the arbiter receives
the C-Lock Id from the request for an atomic operation of
the Pool, it allows only one C-Lock Id to be acquired by the
cores within the group.

Global Counter:

Global counter keeps track of the items registered by
allotting a gIdx value for each item depending on the order it
is registered. Once the Pool gets the grant for access, it sets
the gIdx fields of the newly registered Item entries to the
current global index values which is broadcasted by the
global counter. At the same time, the granted Pool signals
the global counter to increment the global index value.

Pool:

Each pool consists of registered items from the
corresponding core, conflict checker and logic for clock
enable and arbiter request. The pool broadcasts all the items
to the item buses and requests the other pools to check for
conflicts by comparing the broadcasted items with their own
registered items. Immediately after, the conflict checking
process is performed in the other pools. Fig5 shows the
architecture of the pool.

Paper ID: 02014729 2427

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 5: Architecture of each Pool

3.4 Operation of C-Lock Manager

Conflict checking is done by the conflict checker block. A
conflict checker is dedicated to an Item entry and checks
whether any of the broadcasted Items cause true conflicts
with its own Item.

If Itemloc is the Item to which the conflict checker is
dedicated (loc stands for local), and Itemrem is one of the
broadcasted Items (rem stands for remote). Then, Itemloc
and Itemrem have true conflicts if the following conditions
are simultaneously present:
 Both Items are valid
 Their address ranges overlap
 At least one of them is a write operation
 gIdx of Itemloc is smaller than gIdx of Itemrem

The third one filter out the false dependency (Read-after-
Read).The fourth condition detects possible data hazard. If
the fourth condition holds, it means that the Itemrem is
registered later than Itemloc and, therefore, executing
Itemrem prior to Itemloc may cause data hazard in the
requested memory region.

Each conflict checker performs the above operation for all
the broadcasted Items and finally produces out the conflict
signal by simply pairwise ORing the results. Again, by
ORing all the conflict signals from the conflict checkers, the
Pool finally makes the signal which indicates whether any of
the broadcasted Items are in conflict with the Items in this
Pool. The signal is AND gated with the arb decision signal
to output the final conflict out signal.

After that, the Pool which requested conflict checks from the
other Pools gathers the results by watching the conflict in
signals in Fig. 5. If any of the other Pools reports conflict, it

means the requested atomic access cannot be executed at this
time, and therefore, the Pool disables the clock of the
corresponding core.

Also, the conflict in signals is stored in the “who-blocked-
me" register so that the Pool can watch the events of the
blocking Pools being cleared and reattempt its access. This
can effectively avoid the blocked Pools watching the
activities from all the other cores. When no conflicts are
reported from the other Pools, the core keeps running and
executes the atomic access for the registered Items.

3.5 C-LOCK Algorithm

The interaction between the cores during C-Lock operation
is as illustrated in the flowchart Fig6.

Figure 6: Interaction of cores in C-Lock operation

The transaction of the core with the memory is implemented
using FSM as shown in Fig7.

Figure 7: FSM for interaction of the core with the memory

Fig7 represents the 2 possible states of Transaction memory
operation used to implement C-Lock manager. When there is
no conflict and core is clock enabled read/write operations
will be performed. Once operation is completed the core

Paper ID: 02014729 2428

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

updates required registers and the pool is cleared to make
way for new items. The core asserts C-Lock manager by
setting flag (Done) and accordingly true conflicts between
cores are determined for next cycle. In the event of a True
Conflict the core is clock gated and remains Idle till clock
enabled by C-Lock manager. Thus C-Lock mechanism
improves performance and conserves energy over
Speculative Lock Elusion method of Lock free TM methods
and Lock based methods. The results will be discussed in the
coming section.

4. Results

4.1 Simulation results

We implemented C-Lock Manager with Verilog HDL, to
analyze the hardware overhead of the proposed scheme.
Simulation and Synthesis of the implementation were
analyzed using Cadence Tool Suites using a 180nm
technology library - NC Sim for Simulation and RTL
Compiler for Synthesis.

Figure 8: Output buffer signals

Fig8 shows output buffer signals when the read and write
operations are carried out in varying (and also conflicting)
address ranges for different cores.

Figure 9: Read without conflict

Fig9 shows that read operation does not require a conflict
detection and all cores have access to perform read operation
even on shared address ranges.

Figure 10:Write with conflict

In Fig10 all the cores are performing wrte operation, but C-
Lock manager has identified conflict in Core1 and Core3
with respect to other cores. So Core1 and Core3 are clock
gated and remain Idle till C-Lock manager Clock Enables
the cores.

Figure 11: Write and read with conflict

In Fig11 Core 0 is performing a write operation and Core 2
is enabled to perform only read operation on the requested
address ranges. Here no conflict is identified by C-Lock
manager between Core0 and Core2.

4.2 Synthesis results

A synthesis of C-Lock Manager implementation yielded
favorable results for evaluation purpose. We implemented
two methods in C-Lock manager where in a state machine
was used to model control unit to implement Transaction
memory states and other was implemented without using
FSM. A basic performance analysis of both methods in terms
of Speed, Area and Power are tabulated in Table1. Fig 12
shows the RTL Schematic generated in Xilinx design Suite.

Table 1: Basic Performance evaluation

Design
Leakage

Power(nW)
Dynamic Power (mW)

Cell
area

Without FSM 26.416 2.24 7531
FSM 26.416 2.22 7531

Figure 12: RTL Schematic

To get the actual gauge of performance enhancements using
C-Lock method, processor benchmark evaluation tools can
be used. The benchmark applications can be choose from the
STAMP benchmark suite, the MiBench suite, thread
scheduling model (TSM), and microbenchmarks for
MPARM.

Paper ID: 02014729 2429

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Conclusion

A C-Lock manager is implemented using Verilog HDL and
is programmed with the objectives of using the hardware
resource and software algorithms to overcome the data
synchronisation issues in a multi-core multiprogramming
architecture. The effectiveness of the proposed scheme is in
exploiting available parallelism with low power
consumption. In detail, C-Lock prevents unnecessary
exclusive execution using the access address range
comparison and the system does not perform a power-
wasting speculative execution. Also, the clock-gating feature
reduces the dynamic power of the cores that are not granted
for a critical section access. The proposed scheme may
require significant work from the programmer; this can be
regarded as a trade-off of the improved performance
including power efficiency. On the other hand, the hardware
area overhead and the power and execution time overhead of
the proposed approach are not significant compared to
performance enhancements. The high efficiency of C-Lock
relies mostly on the special hardware C-Lock Manager, with
marginal support from the software.

References

[1] D. Geer, “Chip Makers Turn to Multicore

Processors”, Computer, vol. 38, no. 5, pp. 11–13, 2005.
[2] M. Levy and T. Conte, “Embedded Multicore

Processors and Systems”, Micro, IEEE, vol. 29, no. 3,
pp. 7–9, 2009.

[3] M. Herlihy and J. E. B. Moss, “Transactional
Memory: Architectural Support For Lock-free Data
Structures”, in Proc. 20th Int’l Symp. on Computer
Architecture (ISCA ’93), 1993, pp. 289–300.

[4] R. Rajwar and J. Goodman, “Transactional Lock-Free
Execution of Lock-Based Programs”, in Proc. 10th
Int’l Conf. on Architectural Support for Programming
Languages and Operating systems. ACM, 2002, pp. 5–
17.

[5] R. Rajwar and J. Goodman, “Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded
Execution”, in Proc. 34th Annual ACM/IEEE Int’l.
Symp. on Microarchitecture. IEEE Computer Society,
2001, pp. 294–305.

[6] M. Monchiero, G. Palermo, C. Silvano, and O. Villa,
“Efficient Synchronization for Embedded On-Chip
Multiprocessors”, Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 14, no. 10, pp.
1049–1062, 2006.

[7] J. Li, J. F. Martinez, and M. C. Huang, “The Thrifty
Barrier: Energy-Aware Synchronization in Shared-
Memory Multiprocessors,” in Proc. Int’l Symp. on
IEEE High-Performance Computer Architecture, vol.
10, 2004, pp. 14–23.

[8] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J.
Davis, B. Hertzberg, M. Prabhu, H. Wijaya, C.
Kozyrakis, and K. Olukotun, “Transactional Memory
Coherence and Consistency,” in ACM SIGARCH
Computer Architecture News, vol. 32, no. 2. IEEE
Computer Society, 2004, p. 102.

[9] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson,
and S. Lie, “Unbounded transactional memory,” in
Proc. 11th Int’l Symp. On High-Performance Computer
Architecture (HPCA ’05), 2005, pp. 316–327.

[10] K. Moore, J. Bobba, M. Moravan, M. Hill, and D.
Wood, “LogTM: Log-Based Transactional
Memory,” in Proc. 12th Int’l Symp, On High-
Performance Computer Architecture, 2006, pp. 254–
265.

[11] M. Monchiero, G. Palermo, C. Silvano, and O. Villa,
“Power/performance hardware optimization for
synchronization intensive applications in mpsocs,” in
Proc. Design, Automation and Test in Europe, vol. 1,
2006.

[12] C. Ferri, T. Moreshet, R. Bahar, L. Benini, and M.
Herlihy, “A Hardware/Software Framework for
Supporting Transactional Memory in a MPSoC
Environment,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 1, pp. 47–54, 2007.

[13] C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, and M.
Herlihy, “Embedded-tm: Energy and complexity-
effective hardware transactional memory for
embedded multicore systems,” Journal of Parallel and
Distributed Computing, vol. 70, no. 10, pp. 1042–1052,
2010.

[14] S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, and M.
Valero, “Clock Gate on Abort: Towards Energy-
Efficient Hardware Transactional Memory,” in Proc.
IEEE Int’l Symp. on Parallel and Distributed
Processing, 2009.

[15] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis,
“Adaptive Locks: Combining Transactions and
Locks for Efficient Concurrency,” Journal of Parallel
and Distributed Computing, vol. 70, no. 10, pp. 1009–
1023, 2010.

Author Profile

Megha.S received her B.E in Electronics and
communication from Visvesvaraya Technological
University (VTU) in 2010. She worked at M/S
Mindtree for 2 years from July 2012 - October 2014 in
the field of Digital Board design. Currently, she is

pursing M.Tech in VLSI and Embedded systems from Bangalore
Institute of Technology, VTU. She is also working as Intern in the
field of ASIC verification at LSI, Bangalore.

Dr. C.R. ByraReddy received B.E in Instrumentation
Technology from RV College of Engineering,
Bangalore University in 1991, and M.E from UVCE,
Bangalore University in 1999. He hold Ph.D from Sri
Venkateswar University, Tirupathi. He has both
academic and industry experience in various research

fields. He is currently working as Associate Professor in Dept of
ECE, Bangalore Institute of Technology, Bangalore. He has
published 9 research papers in National and International
conferences.

Paper ID: 02014729 2430

