International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

Fuzzy Metric on Fuzzy Linear Spaces

Gebru Gebrayⁱ, B. Krishna Reddyⁱⁱ

¹Research Scholar at Osmania University ²Assistant professor of Mathematics, UCS, Osmania University

Abstract: In this paper, we introduce metric on a subset of a fuzzy linear space and some of its properties are discussed. In the sequel, we proved that a norm on a fuzzy linear space (in sense of C. P. Santhosh and T. V. Ramakrishnan [1]) induces a metric of fuzzy linear spaces (in our sense).

Keywords: Fuzzy field, fuzzy linear space, fuzzy metric space (linear space), norm on a fuzzy linear space.

1. Introduction

How to define a fuzzy metric is one of the fundamental problems in fuzzy mathematics which is widely used in fuzzy optimization and pattern recognition. Different authors introduced different notion of metric on a fuzzy set from different view point. K.C. Wong [2] defined fuzzy point and discussed some topological properties. Zike Dong [3] defined Pseudo- metric spaces with metric defined between fuzzy points rather than between fuzzy sets. Nai-Hung Hsu [4] introduced fuzzy metric space with metric defined between fuzzy points. Gu Wenxiang and Tu Lu [5] introduced notions of fuzzy field and fuzzy linear spaces over fuzzy field. Thereafter, C. P. Santhosh and T.V. Ramakrishna [1] introduced the concept of norm and inner product on fuzzy linear spaces. This paper is an attempt to define a metric of fuzzy set (fuzzy linear space over fuzzy field) contained in fuzzy linear spaces so that a norm defined by [1] induces a metric on fuzzy linear spaces.

2. Brief summary of Fuzzy Field and Fuzzy Linear Spaces

In this paper, F represents \Re the set of all real numbers, or \mathbb{C} the set of all complex numbers.

Definition 2.1 [5] Let F be a field and let K be fuzzy set in F with membership function μ . Suppose the following conditions hold

 $\begin{array}{l} (1) \ \mu(x+y) \geq \ \min \left\{ \mu(x), \mu(y) \right\} \\ (2). \ \mu(-x) \geq \ \mu(x) \\ (3). \ \mu(xy) \geq \ \min \left\{ \mu(x), \mu(y) \right\} (4). \ \mu(x^{-1}) \geq \ \mu(x) \end{array}$

Then we call K is a fuzzy field in F(fuzzy field of F) and it is denoted by (K, F)

Proposition 2.2 [5] If (K, F) is a fuzzy field of F, then

 $(1). \mu(0) \ge \mu(x), x \in F(2). \mu(1) \ge \mu(x), x \neq 0$

Proposition 2.3 [1] If (K, F) is a fuzzy field of F, then

 $(1).\,\mu(x)=\,\mu(-x), x\in F\,(2).\,\mu(x^{-1})=\,\mu(x)\,, x\neq 0$

Proposition 2.4 [5] Let K and F be fields and f: $F \rightarrow K$ be homomorphism. Suppose (X, F) is fuzzy a field of F and (Y, K) is a fuzzy field of K. Then

(i) (f(X), K) is a fuzzy filed of K. (ii) $(f^{-1}(Y), F)$ a fuzzy field of F.

Definition 2.5 [5] Let F be a field and let K be fuzzy set in F with membership function μ .

Let X be a linear space over field F and U be a fuzzy set in X with membership function T. Suppose the following conditions hold:

(1) $T(x + y) \ge \min\{T(x), T(y)\}$ (2) $T(-x) \ge T(x)$ (3) $T(\lambda x) \ge \min\{\mu(\lambda), T(x)\}$ (4) $\mu(1) \ge T(0)$

Then we call (U,X) fuzzy linear space over fuzzy field (K,F).

Proposition 2.6 [1,5] If (U, X) is fuzzy linear space over fuzzy field (K,F).Then

(1) $\mu(0) \ge T(x)$ (2) T(-x) = T(x) (3) $T(0) \ge T(x)$

Proposition 2.7 [5] Let X and Y be linear spaces over field F, let $f: X \rightarrow Y$ be linear transformation. If (U, X) and (V, Y) are fuzzy linear spaces over fuzzy field (K, F),then

(i) (f(U), Y) is a fuzzy linear spaces over fuzzy field of (K, F).

(ii) $(f^{-1}(V), X)$ a fuzzy linear space over fuzzy field of (K, F).

Proposition 2.8 [1] let $\{(K_i, F)\}$ be a fuzzy field over F, let $\{(V_i, X_i)\}_{i=1}^n$ be sequence of fuzzy linear spaces over (K_i, F) , then $(V_1 x V_2 x \dots x V_n, X_1 x X_2 x \dots x X_n)$ is fuzzy linear space.

Proposition 2.9 [6] Let $U_1, U_2, ..., U_n$ be fuzzy sets in $X_1, X_2, ..., X_n$ respectively, then the Cartesian product is a fuzzy set in the product space $X_1 x X_2 x ... x X_n$, with membership function $T_{UxU_2x...xU_n}(x) = \min\{T_{U_i}(x_i)\}$: Where $x = (x_1, x_2, ..., x_n), x_i \in X_i$

3. Fuzzy Metric of Fuzzy Linear Spaces

In this section, a metric will be defined on a set contained in fuzzy linear space. **Notation:** Throughout this section, the following notations will be used:

(i) (U, X) a fuzzy linear spaces over fuzzy field (K, F) with membership functions of U and K, T and μ respectively (ii) . A is non empty fuzzy subset of X, we mean that $A \subseteq X$ and $T(x) \neq 0$ for every $x \in A$.

Definition3.2 Let (K, F) be fuzzy field in F, X be linear spaces over F, and let (U, X) be fuzzy linear spaces over (K, F).

Let $\emptyset \neq A \subseteq U$. A function, d: Ax A $\rightarrow [0, \infty)$ satisfying the following conditions: (1) $\mu(d(x, y)) \geq TAx A(x, y)$ (2) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (3) d(x, y) = d(y, x) for all x, y $\in A$ (4) d(x, y) $\leq d(x, z) + d(z, y)$ for all x, y, z $\in A$.

Then d is said to be fuzzy metric on (A, U) (fuzzy metric on A) and ((A, U), d) is called fuzzy metric space.

Example 3.3 Let X be a linear space over F, and let (U,X) be a fuzzy linear spaces over a fuzzy field (K, F). Let A be a nonempty subset of X. Consider a discrete metric d, d: A x A $\rightarrow [0, \infty)$ given by $d(x, y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$. Then ((A, U), d) is a fuzzy metric space.

Proof: Clearly, d is metric on A , and hence it satisfies conditions (2)-(4) of definition 3.2. So, it suffices to verify definition 3.2(1). But,

$$\begin{split} \mu \big(d(x,y) \big) &= \begin{cases} \mu(1) \text{if } x \neq y \\ \mu(0) \text{ if } x = y \end{cases} \text{.By definition } 2.5(4) \text{ and} \\ \text{proposition } 2.6(1), \text{ we have } \mu(1) \geq T(x) \text{ and } \mu(0) \geq \\ T(x). \text{ Thus, } \mu(1) \geq T_{Ax A}(x,y) \text{ and } \mu(0) \geq T_{Ax A}(x,y). \\ \text{Therefore, } ((A, U), d) \text{ is fuzzy metric space.} \end{split}$$

A fuzzy metric as in example 3.3 will be referred as a discrete fuzzy metric on (A,U).

Example 3.4 Let (F, \mathcal{R}) be a fuzzy filed in \mathcal{R} . If d: $\mathcal{R}x\mathcal{R} \rightarrow [0, \infty)$ is a mapping defined by d(x, y) = |x - y|, then $((F, \mathcal{R}), d)$ is a fuzzy metric space.

Proof: Since d satisfies (2)-(4) of definition 3.2, we need to verify definition 3.2(1).But

 $\mu(d(x,y)) = \begin{cases} \mu(|x-y|) = \mu(x-y) & \text{if } x \ge y \\ \mu(y-x) & \text{if } x < y \end{cases}$ = $\mu(x-y) \ge \min \{\mu(x), \mu(-y)\}$ = $\min \{\mu(x), \mu(y)\} = \mu_{Kx K}(x, y)$

Therefore, $((F, \mathcal{R}), d)$ is fuzzy metric space.

We may define convergence of sequences in ((A, U), d) as follows.

Definition 3.5 Let ((A, U), d) be fuzzy metric spaces. A sequence $\{x_n\}$ is said to be convergent to $\{x_0\}$ (denoted by $min_{n\to\infty} x_n = x_0$) with respect to fuzzy metric d if and only if given $\epsilon > 0$, there exists a positive integer N such

that for all $n \ge N, \mu(d(x_0, x_n)) \ge T_{AxA}(x_0, x_n)$ and $d(x_0, x_n) < \epsilon$

Remark 3.6 If limit of a sequence exists it is unique.

Definition 3.7 Let ((A, U), d) be a fuzzy metric spaces. A sequence $\{x_n\}$ is said to be Cauchy sequence with respect to d if and only if given $\in > 0$, there is a positive integer N such that for all $m, n \ge N, d(x_m, x_n) < \epsilon$ and $\mu(d(x_m, x_n)) \ge T_{AxA}(x_m, x_n)$.

Definition 3.8 A fuzzy metric space ((A, U), d) is said to be complete if and only if every Cauchy sequence of ((A, U), d) has a convergent subsequence.

Theorem 3.9 If a fuzzy metric space ((A, U), d) is complete then (A, d) is complete metric space

Proof: The result follows from definition 3.2.

Theorem 3.10 Suppose $((V_i, X_i), d_i)_{i=1}^n$ is the sequence fuzzy metric spaces over fuzzy fields (K_i, F) for each i=1,2,3,...,n, then $(V_1x...x V_n, X_1x...x X_n)$ is a fuzzy metric space.

Proof: Consider a mapping $d: X_1 x \dots x X_n \rightarrow [0, \infty)$ given by

 $d(x, y) = \sum_{i=1}^{n} d_i(x_i, y_i)$, Where $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$. Then d is metric on $X_1 x ... x X_n$. Hence, it satisfies (2)-(4) of definition 3.2. Therefore, it suffices to verify definition 3.2(1). Now suppose μ_{K_i} and T_{V_i} are membership functions of K_i and V_i for all i = 1, 2, ..., n respectively. Then,

 $\mu(d(x,y)) = \mu(\sum_{i=1}^{n} d_i(x_i, y_i))$ $\geq \min \{\mu(d_1(x_1, y_1), \mu(d_2(x_2, y_2)), \dots, \mu(d_n(x_n, y_n))\}$

$$\geq \min \{T_{V_1 \times V_1}(x_1, y_1), T_{V_2 \times V_2}(x_2, y_2), \dots, T_{V_n \times V_n}(x_n, y_n)\}$$

≥

$$\min\{\min\{T_{V_1}(x_1), T_{V_1}(y_1)\}, \dots, \min\{T_{V_n}(x_n), T_{V_n}(y_n)\}\}$$

(min (T

 $\min \{\min\{T_{V_1}(x_1),\ldots,T_{V_n}(x_n)\},\min\{T_{V_1}(y_1),\ldots,\mu_{V_n}(y_n)\}\}$

$$= \min \{T_{V_1 x V_2 x \dots x V_n}(x), T_{V_1 x V_2 x \dots x V_n}(y)\} = T_{V_1 x V_2 x \dots x V_n}(x, y)$$

Hence, $(V_1 x V_2 x \dots x V_n, X x X_2 x \dots x X_n), d)$ is a fuzzy metric space.

Example 3.11 Let (K, \mathcal{R}) be a fuzzy field of \mathcal{R} . A function d: $\mathcal{R}^n \to [0, \infty)$ given by

 $d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$, where $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ defines a metric on $(K_1, K_2, ..., K_n, \mathcal{R}^n)$.

Proof: The result follows from example 3.4 and theorem 3.10.

Theorem 3.12 Let X and Y be linear spaces over the field F. Let (U, X) be fuzzy linear spaces over fuzzy field (K, F), and let A be a non empty subset of X and B be a non empty subset of Y. If $f: A \rightarrow B$ is a bijective mapping, then the following statements are equivalent

(1). (V, A) is fuzzy metric space.

(2). (f(V),B) is fuzzy metric space.

Proof:(1) \Rightarrow (2): Let ((V, A), d_A) be fuzzy metric space. Let $d_B: Bx B \rightarrow [0, \infty)$ be given by $d_B(y_1, y_2) =$ $d_A(x_1, x_2)$, where $y_i = f(x_i)$, i = 1, 2. Then clearly d B defines a metric on B. Moreover, $\mu(d_B(w, z)) = \mu(d_A(x, y): w = fx, z = fy)$ $\geq T_{AxA}((x,y) = min \{T(x),T(y)\}\$ $= \min \{T_{f(A)}(f(x)), T_{f(A)}(f(y))\}$ $= T_{f(A)x f(A)}(w, z) = T_{Bx B}(w, z)$ (2) \Rightarrow 1: Let $(f(V), B, d_B)$ be a fuzzy metric space. Let $d_A: Ax A \rightarrow [0, \infty)$ given by $d_A(x_1, x_2) = d_B(y_1, y_2), y_i = f(x_i), i = 1, 2$. Clearly d_A defines metric on A. Moreover, $\mu(d_A(x_1, x_2)) = \mu(d_B(y_1, y_2); y_i = f(x_i), i = 1, 2)$ $\geq T_{f(V)x\,f(V)}(y_1,y_2)$ $= min \{T_{f(A)}(y_1), T_{f(A)}(y_2)\}$ $= \min \{T(x_1), T(x_2)\} = T_{A_{X}A}(x_1, x_2).$

Now we will give an example of fuzzy linear spaces without non trivial metric on it; even though, the universal spaces are metric spaces.

Example 3.13 Let (K, \mathcal{R}) fuzzy field with membership function μ such that

$$\mu(x) = \begin{cases} 1 & \text{if } x = \pm 1, x = 0\\ \frac{1}{2} & \text{if } x \neq 0, \pm 1 \end{cases}$$
 Let X be a metric linear

space over F. Let U be a fuzzy set with membership function T such that T(x) = 1 for all $x \in X$, then (U, X) is fuzzy linear space. However, there is no nontrivial fuzzy metric, d on (U,X) which satisfies definition 3.2(1).

C.P. Santhosh and T. V. Ramakrishan [1] introduced a norm on Fuzzy linear spaces. Now we will show that, this norm induces metric on the same fuzzy linear spaces in our sense.

Definition 3.14 [1] Let (K, F) be fuzzy field in F, X be linear spaces over F, and let (U, X) be fuzzy linear spaces over (K, F).

A norm on (U, X) is a function, $||.||: X \rightarrow [0, \infty)$ satisfies the following conditions:

 $(1). \mu(||x||) \ge T(x)$ $(2). ||x|| \ge 0 \text{ and } ||x|| = 0 \text{ if and only if } x = 0$ $(3) ||\alpha x|| = |\alpha|||x|| \text{ for all } x \in X$ $(4) ||x - y|| \le ||x|| + ||y|| \text{ for all } x, y \in x.$ A pair (U,X,|| ||) is called fuzzy normed linear space.

Theorem 3.15 Let (U, X) be a fuzzy normed linear space over a fuzzy field (K, F). Then (U, X) is fuzzy linear metric space.

Proof: Let of (U, X, || ||) be a normed space, let T and μ be membership functions of fuzzy set U in X and K in F respectively.

Consider a mapping, $d: Xx X \rightarrow [0, \infty]$ given by d(x, y) = ||x - y||. Clearly *d* defines metric on *X*. Hence it satisfies (2) - (4) of definition 3.2. So, we will verify only definition d3.2(1). Since $\mu(|x - y|) \ge T(x - y)$ by definition 3.14(1), and $T(x - y) \ge min\{T(x), T(-y)\}$ by(definition 2.5(1)), we have

$$\mu(d(x,y)) = \mu(||x-y||) \ge T(x-y)$$

$$\ge \min\{T(x), T(-y)\}$$

$$= \min\{T(x), T(y)\} = T_{Ux \ U}(x,y)$$

References

- C.P. Santhosh and Ramakrishnan, Iranian Journal of fuzzy system, 8(2011), pp.135-144
- [2] C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46(1974), pp.316-328
- [3] Z. Dong, fuzzy pseudo -metric spaces, J. Math. Anal. Appl., 86(1982), pp.74-95
- [4] Nai-Hung Hsu, On completion of Fuzzy metric spaces, Bull. Nat. Taiwan Nor. Univ, 37(1992), pp. 385-392
- [5] G. Wenxiang and L. Tu, fuzzy linear space, fuzzy sets and systems, 49(1992), pp.377-380
- [6] H. J. Zimmermann, Fuzzy set Theory and its applications, Third Edition (1996), Kluwer Academic publishers, Boston/Dordrecht/London