
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Verification of I2C Master Core using System
Verilog-UVM

T Tarun Kumar1, CY Gopinath2

1Bangalore Institute of Technology, Bangalore, Karnataka - 560004, India

2Associate Professor, Bangalore Institute of Technology, Department of Electronics and Communication
Bangalore, Karnataka - 560004, India

Abstract: This paper contracts the reusability of the I2C Bus protocol under various design environments, and by following Universal
Verification Methodology (UVM) we can test the design and its functionality in these environments. The RTL design of I2C is open
source and is obtained from Opencore.org, and its functional verification is carried by self, using System Verilog and UVM. The main
advantage of this type of methodology is it does not interfere with the DUT and it is reusable with little or no modification. The design
and verification in UVM is carried out on Mentor Graphics Questasim 10c.The coverage so obtained is 100% for assertion based
coverage and 90.15% functional coverage using SV (SystemVerilog). The total coverage so obtained is 95.07%.

Keywords: I2C, SystemVerilog, UVM, Functional Verification, Coverage, Assertion.

1. Introduction

In consumer electronics, telecommunications and industrial
electronics, there are often many similarities between
seemingly unrelated designs. For example, nearly every
system includes:

 Some intelligent control, usually a single-chip
microcontroller

 General-purpose circuits like LCD and LED drivers,
remote I/O ports, RAM, EEPROM, real-time clocks or
A/D and D/A converters

 Application-oriented circuits such as digital tuning and
signal processing circuits for radio and video systems,
temperature sensors, and smart cards

To exploit these similarities to the benefit of both systems
designers and equipment manufacturers, as well as to
maximize hardware efficiency and circuit simplicity, in early
1980’s Philips Semiconductor (now NXP Semiconductors)
developed a simple bidirectional 2-wire bus for efficient
inter-IC communication and control. This bus is called the
Inter-IC or I2C-bus and is de facto world standard that is
now implemented in over 1000 different ICs manufactured
by more than 50 companies [6]. All I2C-bus compatible
devices incorporate an on-chip interface which allows them
to communicate directly with each other via the I2C-bus.
This design concept solves the many interfacing problems
encountered when designing digital control circuits.
Additionally, the versatile I2C-bus is used in various control
architectures such as System Management Bus (SMBus),
Power Management Bus (PMBus), Intelligent Platform
Management Interface (IPMI), Display Data Channel (DDC)
and Advanced Telecom Computing Architecture (ATCA).

In Verilog or VHDL, a testbench consists of a hierarchy of
modules containing testbench code that are connected to the
design under test (DUT). The modules contain stimulus and
response checking code which is loaded into simulator
memory along with the DUT at the beginning of the
simulation and is present for the duration of the simulation.

Therefore, the classic Verilog test bench wrapped around a
DUT consists of what are known as static objects.
SystemVerilog builds on top of Verilog by adding abstract
language constructs targeted at helping the verification
process. One of the key additions to the language was the
class. SystemVerilog classes allow Object Orientated
Programming (OOP) techniques to be applied to testbenches.
Unlike all of the design modules and interfaces that are
called during compilation and elaboration, none of the UVM
testbench environment is setup until after simulation starts.

The Importance of verification is [1]-[4]-[12]:

 70% of design effort goes to verification
 Verification is on the critical path
 Verification time can be reduced through abstraction
 Using abstraction reduces control over low level details
 Verification time can be reduced through automation
 Randomization can be used as an automation tool

The UVM itself is a library of base classes which facilitate
the creation of structured testbenches using code which is
open source and can be run on any SystemVerilog IEEE
1800 simulator [1]-[5]. UVM 1.1d Reference
Implementation was released in March, 2013 [5].This paper
details important basics on requirements for the verification
flow to check the functionality of any digital design. It lists
the important steps that are needed to be followed in creating
UVM environment and also the required components in
order to achieve them.

2. Specification of the Design under Test

The Design under Test is an I2C master controller core. It
produces SDA and SCL signals as per the configuration of
its internal registers. SCL controls clock and SDA is used to
transfer data. Each device connected to the bus is software
addressable by aunique address and simple master/ slave
relationships exist at alltimes; masters can operate as master-
transmitters or asmaster-receivers. The number of ICs that

Paper ID: 02014676 2042

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

can be connected to the same bus islimited only by a
maximum bus capacitance of 400 pF. Figure 1 shows the
basic block diagram of the design to be verified.

2.1 I2C BUS

A bus connects the components of a system, e.g. connection
between CPU and main memory, memory and I/O ports or
between peripheral devices. Different types of bus are
available for data transfer. They are I2C, PCI, WISHBONE,
AMBA, XBUS, SPI, and USB.

Each bus has different protocol and bus speed. A faster bus
speed allows faster data transfer. In a typical computer or
SOC bus is used for address transfer and data transfer. The
name I2C translates into "Inter IC". Sometimes the bus is
called IIC or I²C bus[6]-[9]. I2C is used on single boards and
to connect components which are linked via cable. Key
characteristics that make this bus attractive to many
applications are simplicity and flexibility.

 I2C bus has three speeds:
o Slow (under 100 Kbps)
o Fast (400 Kbps)
o High- speed (3.4 Mbps)

Figure 1: Block diagram of the master controller core

3. I2C Communication Procedure

The IC that initiates communication is called Master and the
one that is addressed is called slave. Once an IC that wants to
communicate with another IC [6].

a) Check whether there is any bus activity is occurring or
not. If both SDA and SCL line are high then bus is free. If
the bus is available master generates START condition.

b) SCL provides clock signal to all the ICs connected
through the bus as reference clock signal. The data on the
data wire (SDA) must be valid at the time the clock wire
(SCL) switches from 'low' to 'high' voltage.

c) Address of each device is put on serial form on the SDA
line.

d) One bit signal is put on the SDA line to know whether
data is to be transmitted or received from the slave.

e) One bit represents acknowledgement bit to inform the
master that slave is ready to receive or transmit data.

f) After the acknowledgement bit is received by the master
it puts data serially on the SDA line.

g) The first IC sends or receives as many 8- bit words of
data as it wants. After every 8- bit data word the sending

IC expects the receiving IC to acknowledge that the data
is received.

h) When all data is received STOP condition is generated
and the bus is free again.

The various control signals in I2C bus protocol are defined
as follows [6]:

 START – high-to-low transition of the SDA line while
SCL line is high.

 STOP – low-to-high transition of the SDA line while SCL
line is high.

 ACK – receiver pulls SDA low while transmitter allows it
to float high.

 DATA – transition takes place while SCL is slow, valid
while SCL is high.

Figure 2 shows a complete data transfer covering all the
above mentioned states.

Figure 2: A Complete Data Transfer

4. Verification Methodology

4.1 Compiling Designs & Running UVM

To help understand how UVM simulations work within the
SystemVerilog testbench environment, it is useful to have a
big-picture view of the entire simulation flow as shown in
figure 3.

Figure 3: Compiling designs & running UVM – overview

Paper ID: 02014676 2043

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A design and testbench are first compiled, and then the
design and testbench are elaborated. Design and elaboration
happen before the start of simulation at time-0 [11].

At time-0, the procedural blocks (initial and always blocks)
in the top-level module and in the rest of the design start
running. In the top-level module is an initial block that calls
the run_test() task from uvm_top, which is the testcase we
want to run. It is passed to simulator by passing the test name
or by using “+UVM_TESTNAME=” switch. When run_test
() is called at time-0, the UVM pre-run() global function
phases (build(), connect(), end_of_elaboration(),
start_of_simulation()) all execute and complete. After the
pre-run() global function phases complete (still at time-0),
the global run() phase starts. The run ()phase is a task-
based phase that executes the entire simulation, consuming
all of the simulation time. When the run() phase stops, the
UVM post-run() global function phases (extract(), check(
), report()) all run in the last time slot before simulation
ends. By default, when run_test() is done, $finish is called
to terminate the simulation [11].

Phases are a synchronizing mechanism for the
environment.The UVM provides the following predefined
phases for all uvm_components [13].

 build - Depending on configuration and factory
settings,create and configure additional component
hierarchies.

 connect - Connect ports, exports, and implementations
(imps).

 end_of_elaboration - Perform final configuration,
topology, connection, and other integrity checks.

 start_of_simulation - Do pre-run activities such as printing
banners, pre-loading memories, etc.

 run - Most verification is done in this time-consuming
phase. May fork other processes. Phase ends when
global_stop_request is called explicitly.

 extract - Collect information from the run in preparation
for checking.

 check - Check simulation results against expected outcome
 report - Report simulation results.

4.2 UVM Verification Components

 Design Under Test - The design that is intended to be
verified .This is generally RTL description in any of the
HDL (Verilog, VHDL and System Verilog).This
completely describes the functionality of the design as well
the features to be verified.

 Interface - Interface serves as the actual link between the
design- under- verification and the verification
environment. It is a SystemVerilog interface. The interface
describes the pin - level description of the DUT. An
interface is basically a bundle of nets or wires.

 Virtual Interfaces - It provide a mechanism for separating
abstract models from the actual signals of the design. A
virtual interface allows the same instance or the
subprogram to operate on different parts of the design. It
dynamically controls the set of signals associated with the
subprogram, this allows passing the same data over all the
components.

 Transactions - Interfaces represent the input to the DUT.
The fields and attributes of transactions are derived from
the transaction’s specification. In a test, many data items
are generated and those are sent to the DUT via driver.
Generally data item fields are randomized using System
Verilog constraints many number of tests can be created.

 Agents - Most DUTs have a number of different signal
interfaces, each of which have their own protocol. The
UVM agent collects together a group of uvm_components
focused around a specific pin-level interface. The purpose
of the agent is to provide a verification component which
allows users to generate and monitor pin level transactions.
I2C agent used by the Testbench communicates with the
DUT, and to create background traffic. Wishbone agent is
used to drive the DUT via the DUT's wishbone interface

 Sequence And Sequence - A sequence is the series of
transaction and sequencer is used to control the flow of
transaction generation. A sequence is extended from
uvm_sequence class. uvm_sequencer does the generation
of this sequence of transaction. Driver (extension of
uvm_driver) takes the transactions from Sequencer and
processes the packets of data or drives them to other
component or to the DUT. It allows the addition of
constraints to the data item generated in the sequence, thus
bringing forth the corner cases.

 Driver - Driver is defined by extending uvm_driver.
Driver takes the transactions from the sequencer by using
seq_item_port. These transactions will be driven to DUT
as per the interface signal specifications. Then it sends the
transaction to scoreboard using uvm_analysis_port. Task
for resetting DUT and configuring the DUT are also
declared here. An instance of the driver class is created in
the environment class and the sequencer is connected to it.

 Monitor - A monitor is a passive entity that samples DUT
signals but doesn‘t drive them. A monitor:
 Collects transactions (data items).
 Extracts events, performs checking and coverage.
 Optionally prints trace information.
Checking typically consists of protocol and data checkers
to verify that the DUT Output meets the protocol
specification. Coverage is collected in the monitor. It is
implemented by extending the uvm_monitor class and an
instance is created in the environment for hooking it up
with DUT signals.

 Scoreboard - Scoreboard is implemented by extending
uvm_scorboard. Scoreboard has 2 analysis imports. One is
used to for getting the packets from the driver and other
from the receiver. Then the packets are compared and if
they don't match, then error is asserted. Compare function
of transaction class is used for comparison.

 Environment - Environment class is used to implement
verification environments in UVM. It is extension on
uvm_env class. The testbench simulation needs some
systematic flow like building the components, connection
the components, starting the components etc. uvm_env
base class has methods formalize the simulation steps. All
the methods inside environment class are declared virtual.
Virtual interface is created in the environment and all other
virtual functions of environment class are extended. Our
environment is the top level of the class based part of the
testbench. It also contains the virtual sequencer that is used
to run sequences to coordinate the wband i2cagents
sequences [13].

Paper ID: 02014676 2044

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 4: UVC in a generalized Verification Environment

 Testcases - The uvm_test class defines the test scenario
for the testbench for the DUT and is specified in the test.
Testcase contains the instance of the environment class.
This testcase creates an Environment object and defines
the required test specific functionality. Verification
environment contains the declarations of the virtual
interfaces. These virtual interfaces are pointed to the
physical interfaces which are declared in the top module.
These virtual interfaces are made to point to physical
interface in the testcase.

 Top Module - SystemVerilog interface instance is created
in this module. DUT instance is created and hooked up
with the interface instance. Clock generator is
implemented here. run_test method is called from here.
The test name can be implicitly passed or can be passed as
a command line argument during simulation. The
command line argument takes greater precedence.

5. Verification Plan

The Verification Plan defines exactly what needs to be
tested, and drives the coverage criteria. The completeness of
a verification plan and its accurate implementation lead to
success of the verification project in hand. Detailed goals
using measurable metrics, along with optimal resource usage
and realistic schedule estimates are the contents of a good
plan. Feature extraction, Stimulus generation plan, Checker
plan and Coverage plan are the important parts of a
verification plan [13].

Feature Extraction
It contains the list of all the features to be verified. For the
present DUT, it is the following.

 Response of the DUT in different states: idle, read, write.
 Generation of START and STOP condition.
 Clock Synchronization between the master and slave.
 7- Bit addressing validity.
 All possible Master – Slave data transfer formats
 Generation of ACK and NACK.

Stimulus Generation Plan
 The type of the transfer (read/write).
 The length of the transfer.
 If arbitration occurs or not.
 Slave clock stretching.
 The speed of the transfer.
 The SCL frequency of each participant.

 The addresses addressed by the masters.
 The addresses of the slaves.
 The number of frames.
 The ACK/NACK probability.
 Whether the bus is released at theend of a transfer (STOP

vs. Re-START).
 The delay between frames.

Figure 5(a): Simulation of the I2C for Read operation

Checker Plan is for checking expected results, implemented
by monitors and scoreboards based on the protocol.
Coverage Plan explains the functional coverage of the
features. A functional coverage plan should be built to help
implement coverage points in the verification environment.

6. Results

The I2C is implemented using the Verilog with full duplex
mode which allows the communication between the master
and the salve through the handshaking protocol. When a
slow slave is attached to the bus then problems may occur.
This mechanism works on the SCL line only. The slave that
wants the master to wait simply pulls the SCL low as long as
needed. If the SCL gets stuck due to an electrical failure of a
circuit, the master can go into deadlock and this can be
handled by timeout counters.

Another drawback is speed. The bus is locked at that
moment. Other masters cannot use the bus at that time either.
This technique does not interfere with the previously
introduced arbitration mechanism because the low SCL line
will lead to back-off situations in other devices which
possibly would want to "claim" the bus. So there is no real
drawback to this technique except the loss of
speed/bandwidth and some software overhead in the masters.
We can use this mechanism between masters in a multi-
master environment. So the implementation is carried with
three slaves and two masters. The functional verification of
the I2C is carried using the Questasim10.0c [14]. The
verification is carried for both the READ and WRITE
operation cycles and waveforms are generated as shown in
figure 5(a) and (b). Coverage metrics such as Code coverage,
Block coverage, Expression coverage, Toggle coverage and
FSM coverage is also covered here. Covergroups and
Assertions are used here to estimate functional coverage. The
coverage report obtained is 100% for assertion based

Paper ID: 02014676 2045

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

coverage and 90.15% functional coverage using SV
(SystemVerilog). The overall average coverage so obtained
is 95.07% as shown in figure 6. The FSM is generated using
Cadence IMC showing various states covered and state
transitions as shown in figure 7.

Figure 5(b): Simulation of the I2C for write operation

Figure 6: Functional Coverage of I2C

Figure 7: FSM Coverage of various states in I2C

7. Conclusions

The I2C IP core for intercommunication bus is designed
using the Verilog for multi-master slave communication in
full duplex mode. The verification environment is created

using SystemVerilog constructors and UVM base
classes.UVM Agents are crated for I2C.Sequences are
generated using randomized constraints which cover all the
necessary cases along with some corner cases. Functional
coverage requires a detailed verification plan and much time
creating the cover groups, analyzing the results, and
modifying tests to create the proper stimulus. This may seem
like a lot of work, but is less effort than would be required to
write the equivalent directed tests. Additionally, the time
spent in gathering coverage helps us better track our progress
in verifying design. This methodology provides the coverage
of the RTL design so as to acquire the fault free Protocol
design of I2C and its reusable test environment, so that can
be implemented in real time systems.

References

[1] IEEE Computer Society and the IEEE Standards
Association Corporate Advisory Group, “IEEE
Standard for SystemVerilog - Unified Hardware
Design, Specification, and Verification Language”,
IEEE Std 1800™-2012, 21 February 2013

[2] IEEE Computer Society “IEEE Standard Verilog®
Hardware Description Language”, IEEEStd 1364™-
2005, 07 April 2006.

[3] Chris Spear, “SystemVerilog for Verification”, Second
Edition, 2008.

[4] Janick Bergeron, “Writing Testbenches: Functional
Verification of HDL Models”, Springer US, 28-Feb-
2003

[5] Accellera Organization, “Universal Verification
Methodology (UVM) 1.1 Class Reference”, June 2011

[6] Philips Semiconductor, “I2C-bus specification and user
manual”, Rev. 6 - 4 April 2014

[7] Datasheet for Microchip 24LC256 – 2K I2C Serial
EEPROM.

[8] [Online] http://www.testbench.in
[9] R. Herveille. I2C-Master Core Specification, Rev. 0.9,

2003
[10] P. Venkateswaran, “FPGA Based Efficient Interface

Model for Scalefree Computer Network using I2C Bus
Protocol”; Spl. Issue – Advances in Computer Sci.
&Engg., National Polytechnic Institute, Mexico,
Vol.23, pp. 191- 198, Nov. 21-24, 2006.

[11] Clifford E. Cummings, Tom Fitzpatrick, “OVM &
UVM Techniques for Terminating Tests” DVCon 2011

[12] Prakash Rashinkar, Peter Paterson, Leena Singh, “SoC
VerificationMethodology and Techniques” 2002

[13] Mentor Graphics® Verification Academy “Cookbook
Online Methodology Documentation”

[14] Mentor Graphics Corporation, “Questa® SIM User’s
Manual”, © 1991-2011

Author Profile

T Tarun Kumar received his B.E. degree in Electronics & Comm.
Engineering from Atria Institute of Technology in 2012 and M.
Tech degree in VLSI Design and Embedded System from
Bangalore Institute of Technology in 2014.

C.Y. Gopinath did B.E. in Electronics & Communication from
UVCE in 1985 and M. Tech in Industrial Electronics from SJCE,
Mysore in 1989. He is currently Associate Professor in Bangalore
Institute of Technology.

Paper ID: 02014676 2046

