
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Quality Preference Spatial Approximate String
Search

Joslin T.J

Department of Computer Science and Engineering, Malabar College of Engineering and Technology, Thrissur, India

Abstract: This work deals with the approximate string search in large spatial databases. A spatial preference query ranks objects based
on the qualities of features in their spatial neighborhood. Specifically, investigate range queries augmented with a string similarity
search predicate in road networks. And dub this query the spatial approximate string (SAS) query. The min-wise signature for an index
node u keeps a concise representation of the union of q-grams from strings under the sub-tree of u. Analyze the pruning functionality of
such signatures based on the set resemblance between the query string and the q-grams from the sub-trees of index nodes. For queries
on road networks, using a novel exact method, RSASSOL, which significantly outperforms the baseline algorithm in practice. The
RSASSOL combines the q-gram based inverted lists and the reference nodes based pruning. Extensive experiments on large real data
sets demonstrate the efficiency and effectiveness of our approaches.

Keywords: approximate string search, range query, road network, spatial databases, quality preference search

1. Introduction

Keyword search over a large amount of data is an important
operation in a wide range of domains. In practice, keyword
search for retrieving approximate string matches is required
[4], [6], [9], [11], [17], [18], [22]. Since exact match is a
special case of approximate string match, it is clear that
keyword search by approximate string matches has a much
larger pool of applications. Approximate string search is
necessary when users have a fuzzy search condition, or a
spelling error when submitting the query, or the strings in
the database contain some degree of uncertainty or error. In
the context of spatial databases, approximate string search
could be combined with any type of spatial queries. In this
work, focus on range queries and dub such queries as Spatial
Approximate String (SAS) queries. Denote SAS queries in
Euclidean space as (ESAS) queries. Similarly, extends SAS
queries to road networks (referred as RSAS queries).

Object ranking is a popular retrieval task in various
applications. In spatial databases, ranking is often associated
to nearest neighbor (NN) retrieval. Given a query location,
we are interested in retrieving the set of nearest objects to it
that qualify a condition (e.g., restaurants). Assuming that the
set of interesting objects is indexed by an R-tree, we can
apply distance bounds and traverse the index in a branch-
and-bound fashion to obtain the answer. Spatial database
systems manage large collections of geographic entities,
which apart from spatial attributes contain non-spatial
information (e.g., name, size, type, price, etc.). Here study
an interesting type of preference based approximate string
queries, which select the best spatial location with respect to
the quality of facilities in its spatial neighborhood.

A straightforward solution to any SAS query is to use any
existing techniques for answering the spatial component of
an SAS query and verify the approximate string match
predicate either in post-processing or on the intermediate
results of the spatial search. We refer to them as the spatial
solution. For RSAS queries, the baseline spatial solution is
based on the Dijkstra’s algorithm. Given a query point q, the
query range radius r, and a string predicate, we expand from

q on the road network using the Dijkstra algorithm until we
reach the points distance r away from q and verify the string
predicate either in a post-processing step or on the
intermediate results of the expansion. We denote this
approach as the Dijkstra solution. Its performance degrades
quickly when the query range enlarges and/or the data on the
network increases. This motivates us to find a novel method
to avoid the unnecessary road network expansions, by
combining the prunings from both the spatial and the string
predicates simultaneously.

A straightforward solution in both ESAS and RSAS queries
is to build a string matching index and evaluate only the
string predicate, completely ignoring the spatial component
of the query. After all similar strings are retrieved, points
that do not satisfy the spatial predicate are pruned in a post-
processing step. We dub this the string solution. First, the
string solution suffers the same scalability and performance
issues (by ignoring one dimension of the search) as the
spatial solution. Second, we want to enable the efficient
processing of standard spatial queries (such as nearest
neighbor queries, etc.) while being able to answer SAS
queries additionally in existing spatial databases, i.e., a
spatial-oriented solution is preferred in practice in spatial
databases.

Another interesting problem is the selectivity estimation for
SAS queries. The goal is to accurately estimate the size of
the results for an SAS query with cost significantly smaller
than that of actually executing the query itself. Selectivity
estimation is very important for query optimization purposes
and data analysis and has been studied extensively in
database research for a variety of approximate string queries
and spatial range queries [1].

 Computing edit distance exactly is a costly operation.
Several techniques have been proposed for identifying
candidate strings within a small edit distance from a query
string fast. All of them are based on q-grams and a q-gram
counting argument. For a string σ, its q-grams are produced
by sliding a window of length q over the characters of σ. To
deal with the special case at the beginning and the end of σ,

Paper ID: 02014580 1730

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

that have fewer than q characters, one may introduce special
characters, such as “#” and “$”, which are not in _. This
helps conceptually extend σ by prefixing it with q − 1
occurrences of “#” and suffixing it with q − 1 occurrences of
“$”. Hence, each q-gram for the string σ has exactly q
characters. These q-grams are used for searching.

2. Problem Formulation

 Formally, a spatial database P contains points with strings.
Each point in P may be associated with one or more strings.
For brevity and without loss of generality, here we assume
that each point in P has one associated string. A data set P
with N points is the following set:{(p1, σ1), . , (pN, σN)}.
Different points may contain duplicate strings. In the sequel,
when the context is clear, we simply use a point pi to denote
both its geometric coordinates and its associated string.

A spatial approximate string (SAS) query Q consists of two
parts: the spatial predicate Qr and the string predicate Qs. In
this paper concentrating on using range queries as the spatial
predicate. In the Euclidean space, Qr is defined by a query
rectangle r; in road networks, it is specified by a query point
q and a radius r. In both cases, the string predicate Qs is
defined by a string σ and an edit distance threshold τ.

Let the set Ar = {px|px ∈ P ∧px is contained in r} if P is in
the Euclidean space; or, Ar = {px|px ∈ P∧d(q, px) ≤ r} if P is
in a road network and d(q, p) is the network distance
between two points q and p.

Let the set As= {px|px ∈ P∧ε(σ, σx) ≤ τ}.

We define the SAS query as follows: An SAS query Q: (Qr,

Qs) retrieves the set of points A=Ar∩As. The problem of
selectivity estimation for an SAS query Q is to efficient and
accurately estimate the size |A| of the query answer. We use
σp to denote the associated string of a point p.

3. Proposed Work

The main objective of the paper is to rank the objects based
on the features in their spatial neighbourhood. In this paper,
a study of an interesting type of preference based spatial
approximate string queries are made, which select the best
spatial location with respect to the quality of facilities in its
spatial neighborhood. Spatial database systems manage large
collection of geographic entities, which apart from spatial
attributes contain non-spatial values like size, type, price etc.
In this paper, a study of an interesting type of preference
queries is made, which selects the best spatial object with
respect to the quality of features in its spatial
neighbourhood.

Given a set D of interesting objects, a spatial preference
query retrieves the k objects in D with the highest scores.
The score of an object is defined by the quality of features
(facilities or services) in its spatial neighbourhood. The user
wishes to find a food facility that may be hotel or restaurants
also with different types of transport facility can input these
purposes as spatial query. For each hotel ‘P’ will defined in
terms of (i) the maximum quality for each feature in the

neighbourhood region of the particular position ‘P’ and (ii)
the aggregation of those user requirements.

Here propose, (i)spatial ranking, which ranks the objects
according to their distance from a reference point (ii)non-
spatial ranking, which ranks the objects by aggregating all
the non-spatial values(size, price, type), (iii) neighbour
retrieval, In spatial database, ranking is often associated to
nearest neighbour (NN) retrieval. Given a query location, we
are interested in retrieving the set of nearest objects to it that
qualify a condition (example: restaurants).Assuming that the
set of interesting objects is indexed by an R-tree, then apply
distance bounds and traverse the index in a branch and
bound fashion to obtain the answer, (iv)spatial query
evaluation on R-tree, which is the most popular spatial
access method ,which indexes Minimum Bounding
Rectangles (MBR'S) of objects. R-tree can efficiently
process main spatial query types, including spatial range
queries, nearest neighbour queries, and spatial joins. The
spatial preference query integrates these four types of
ranking in an intuitive way.

In this case, since the locations of points are constrained by
the road network and represented by the edge holding the
point and the distance offset to the edge end, the MHR-tree
is not applicable in this context. In order to handle large
scale datasets, we adopt a disk-based road network storage
framework and develop external-memory algorithms.
Partition a road network G = {V,E} into m edge-disjoint
subgraphs G1,G2, . . . ,Gm, where m is a user parameter, and
build one string index (FilterTree) for strings in each
subgraph. We also select a small subset VR of nodes from V
as reference nodes: they are used to prune candidate
points/nodes whose distances to the query point q are out of
the query range r.

 Conceptually, our RSAS query framework consists of five
steps .Given a query,
step 1.find all subgraphs that intersect with the query range.
step 2.use the FilterTrees of these subgraphs to retrieve the
points whose strings are potentially similar to the query
string.
step 3. prune away some of these candidate points by
calculating the lower and upper bounds of their distances to
the query point, using VR.
step 4. prune away some candidate points using the exact
edit distance between the query string and strings of
remaining candidates
step 5.for the remaining candidate points, we check their
exact distances to the query point and return those with
distances within r.

 We dub this algorithm RSASSOL. We use d(o1, o2) to
denote the network distance of two objects o1, o2 (where an
object can be a network vertex, or a point on the network).

Algorithm: RSASSOL (network G, Qr = (q, r), Qs
=(σ,τ))

1 Find the set X of ids of all subgraphs intersecting (q, r);
2 Set A = ∅, AC = ∅

Paper ID: 02014580 1731

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3 for each subgraph id i ∈ X do
4 Find all point ids in GC whose associated strings σ′
may satisfy ε(σ′, σ) ≤ τ using FilterTreei, and insert
them into AC
5 for every point pi ∈ AC do
6 calculate d+ (pi, q) and d−(pi, q)
7 if d+ (pi, q) ≤ r then
8 if ε(σi, σ) ≤ τ then
9 move pi from Ac to A
10 else
11 delete pi from Ac
12 else
13 if d−(pi, q) > r then
14 delete pi from Ac
15 for every point pi ∈ Ac do
16 if ε(σi, σ) > τ then
17 delete pi from Ac;
18 Use algorithm to find all points p’s in Ac

 such that d(p, q) ≤ r, push them to A
19 Return A.

3.1 Query processing

First, we find all subgraphs that intersect with the query
range. We employ the Dijkstra’s algorithm to traverse nodes
in G (note that we ignore points on G), starting from the
query point q. Whenever this traversal meets the first node
of a new subgraph, we examine that subgraph for further
exploration. The algorithm terminates when we reach the
boundary of the query range (defined by the distance r to
q). For each subgraph Gi to be examined, we use the
approximate string search over Gi’s FilterTree as the next
pruning step, to find points from Gi that may share similar
strings to the query string. Then we further prune the
candidate points using the spatial predicate, by computing
lower and upper bounds on their distances to q using VR.
Given a candidate point p on an edge e = (ni, nj), the
shortest path from p to a reference node nr must pass
through either ni or nj . Thus, the network distance d(p, nr)
= min(d(p, ni) + d(ni, nr), d(p, nj) + d(nj, nr)). We
compute d(p, nr) on the fly rather than explicitly storing the
distance between a point and a reference node since the
number of points is much larger than the number of the
nodes in G. By doing so, we avoid significant space blowup.
We can also compute d(q, nr) in a similar way. Given d(p,
nr) and d(q, nr) for every nr ∈VR , we then obtain the
distance lower and upper bounds between p and q using the
triangle inequality. Each reference node yields such a pair of
lower and upper bounds. We take the maximum (minimum)
value from the lower (upper) bounds of all reference nodes
as the final lower (upper) bound of d(p, q), denoted as
d−(p, q) and d+(p, q) respectively. If d+(p, q) ≤r, we
know for sure p satisfies the spatial predicate and we only
need to check the exact edit distance as the last measure; if
d−(p, q) >r, we can safely remove p; otherwise, we need to
check both the exact edit distance and compute d(p, q) to
complete the verification on p. After the pruning by d−(p,

q) and d+(p, q), we compute the exact edit distances on the
remaining candidate points in AC and prune away points
whose edit distances to the query string σ are larger than
τ. Note that for a point p satisfying d+(p, q) ≤r and the
exact edit distance threshold, it has already been removed
from AC and pushed to A before this step. For all other
remaining candidates AC, we only need to compute the exact
network distances between them and q to complete the
algorithm. The naive solution is to apply the algorithm for
every p ∈AC and q to find their shortest path. However, this
can be prohibitive when |AC| is still large. Next, we
introduce an improvement to the shortest path algorithm,
which computes multiple shortest paths, within the query
range, simultaneously at once between a single source point
s and multiple destination points {t1, . ,tm}.

3.2 Selectivity estimation of RSAS queries

The selectivity estimation of range queries on road networks
is a much harder problem than its counterpart in the
Euclidean space. Several methods were proposed in [15],
[25]. However, they are only able to estimate the number of
nodes and edges in the range. None can be efficiently
adapted to estimate the number of points in the range. One
naive solution is to treat points as nodes in the network by
introducing more edges. This clearly increases the space
consumption significantly (and affects the efficiency) since
the number of points is typically much larger than the
number of existing nodes.

4. Literature Survey

 The most popular spatial access method is the R-tree [3],
which indexes minimum bounding rectangles (MBRs) of
objects. R-trees can efficiently process main spatial query
types, including spatial range queries, nearest neighbor
queries, and spatial joins. Given a spatial region W, a spatial
range query retrieves from D the objects that intersect W.
The IR2-tree was proposed in [13] to perform exact keyword
search with kNN queries in spatial databases.

The IR2-tree cannot support spatial approximate string
searches, neither their selectivity estimation was addressed
therein. Two other relevant studies appear in [7], [12] where
ranking queries that combine both the spatial and text
relevance to the query object were investigated. Another
related work appears in [2] where the LBAKtree was
proposed to answer location-based approximate keyword
queries which are similar to our definition of spatial
approximate string queries in the Euclidean space. The basic
idea in the LBAK-tree is to augment a tree-based spatial
index (such as an R-tree) with q-grams of sub tree nodes to
support edit-distance based approximate string/keyword
searches. The LBAK-tree returns exact answers for the
ESAS queries, and the MHR-tree returns approximate
answers. That said, for ESAS queries, the LBAK-tree should
be adopted when exact answers are required; when space
consumption must be small and approximate solutions are
acceptable, the MHR-tree is the candidate.

RSAS queries and selectivity estimation of SAS queries have
been explored before in the literature [3]. Approximate

Paper ID: 02014580 1732

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

string search alone has been extensively studied in the
literature [4], [5], [6], [8], [9], [11], [14], [17], [18],
[19],[21], [22], [23]. These works generally assume a
similarity function to quantify the closeness between two
strings. There are a variety of these functions such as edit
distance and Jaccard. Many approaches leverage the concept
of q-grams. q-gram based pruning for edit distance that has
been used extensively in the field [14], [19], [21], [24].
Improvements to the q-grams based pruning has also been
proposed, such as vgrams[22], where instead of having a
fixed length for all grams variable length grams were
introduced, or the two-level q-gram inverted index [16].

The problem in our paper is different: we want to search in a
collection (unordered set) of strings to find those similar to a
single query string (“selection query”). Our effort for
selectivity estimation in ESAS queries is also related to
selectivity estimation for spatial range queries [1],[15].
Several methods for selectivity estimation for range queries
on road networks were proposed in [3], [20]. However, they
are only able to estimate the number of nodes and edges in
the range (not the number of points residing on the network
in the range). Here we extend these techniques for points
and combine them with string predicate. Also, they deal with
a single feature dataset whereas our queries consider
multiple feature datasets.

5. Conclusion

 This paper presents a comprehensive study for spatial
approximate string queries in both the Euclidean space and
road networks. We use the edit distance as the similarity
measurement for the string predicate and focus on the range
queries as the spatial predicate. We also address the problem
of query selectivity estimation for queries in the Euclidean
space. We study an interesting type of preference based
approximate string queries, which select the best spatial
location with respect to the quality of facilities in its spatial
neighborhood.

6. Future Work

Future work include examining spatial approximate sub-
string queries, designing methods that are more update
friendly and solving the selectivity estimation problem for
RSAS queries.

7. Acknowledgement

I would like to express my immense gratitude to Asst.
Professor Ms. Mrudula K..P, for all her guidance and
encouragement throughout this research work. She has been
always there providing sufficient support with her expertise
in this area. I would also like to thank my examiners for
their precious comments and suggestions.

References

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity

estimation inspatial databases. In SIGMOD, pages 13–
24, 1999.

[2] S. Alsubaiee, A. Behm, and C. Li. Supporting location-
basedapproximate-keyword queries. In GIS, pages 61–
70, 2010.

[3] Feifei Li, Bin Yao, Mingwang Tang,
MariosHadjieleftheriou. Spatial Approximate String
Search. In IEEE Transactions on volume 25 issue 6,
2013.

[4] Arasu, S. Chaudhuri, K. Ganjam, and R. Kaushik.
Incorporating string transformations in record matching.
In SIGMOD, pages 1231– 1234, 2008.

[5] G. Li, J. Feng, and C. Li. Supporting search-as-you-type
using sql in databases. TKDE, To Appear, 2011.

[6] S. Sahinalp, M. Tasan, J. Macker, and Z. Ozsoyoglu.
Distance based indexing for string proximity search. In
ICDE, pages 125–136, 2003.

[7] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. Proc. VLDB
Endow., 3:373–384, 2010.

[8] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An
efficient filterfor approximate membership checking. In
SIGMOD, pages 805–818, 2008.

[9] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust andefficient fuzzy match for online data
cleaning. In SIGMOD, pages 313–324, 2003.

[10] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity
estimation for string predicates: Overcoming the
underestimation problem. In ICDE, pages 227–238,
2004.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator forsimilarity joins in data cleaning. In ICDE,
pages 5–16, 2006.

[12] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of
the top-k mostrelevant spatial web objects. PVLDB,
2(1):337–348, 2009.

[13] D. Felipe, V. Hristidis, and N. Rishe. Keyword search
on spatialdatabases. In ICDE, pages 656–665, 2008.

[14] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In VLDB,
pages 491–500, 2001.

[15] D. Gunopulos, G. Kollios, J. Tsotras, and C.
Domeniconi. Selectivityestimators for multidimensional
range queries over real attributes. TheVLDB Journal,
14(2):137–154, 2005.

[16] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-
gram/2l: a spaceand time efficient two-level n-gram
inverted index structure. In VLDB, pages 325–336,
2005.

[17] N. Koudas, A. Marathe, and D. Srivastava. Flexible
string matching against large databases in practice. In
VLDB, pages 1078–1086, 2004.

[18] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms forapproximate string searches. In ICDE,
pages 257–266, 2008.

[19] E. Sutinen and J. Tarhio. On using q-gram locations in
approximate string matching. In ESA, pages 327–340,
1995.

[20] E. Tiakas, A. N. Papadopoulos, A. Nanopoulos, and Y.
Manolopoulos. Node and edge selectivity estimation for
range queries in spatial networks. Inf. Syst., 34:328–
352, 2009.

Paper ID: 02014580 1733

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[21] E. Ukkonen. Approximate string-matching with q-
grams and maximal matches. Theor. Comput. Sci.,
92(1):191–211, 1992.

[22] X. Yang, B. Wang, and C. Li. Cost-based variable-
length-gram selectionfor string collections to support
approximate queries efficiently. InSIGMOD, pages
353–364, 2008.

[23] H. V. Jagadish, R. T. Ng, and D. Srivastava. Substring
selectivity estimation. In PODS, pages 249–260, 1999.

[24] L. Jin and C. Li. Selectivity estimation for fuzzy string
predicates in large data sets. In VLDB, pages 397–408,
2005.

[25] L. Jin, C. Li, and R. Vernica. Sepia: estimating
selectivities ofapproximate string predicates in large
databases. The VLDB Journal, 17(5):1213–1229, 2008.

[26] D. Zhang, B. C. Ooi, and A. Tung. Locating mapped
resources in web 2.0. In ICDE, pages 521–532, 2010.

Author Profile

Joslin T.J was born in Thrissur, Kerala in 1990. She
completed bachelor degree in Information Technology
from Jyothi Engineering College, Thrissur in the
academic year 2008-2012. She is pursuing Master
degree in computer science and engineering in Calicut

University, Malabar College of Engineering and Technology,
Thrissur in the academic year 2012-2014.

Paper ID: 02014580 1734

