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Abstract: This work deals with the approximate string search in large spatial databases. A spatial preference query ranks objects based 
on the qualities of features in their spatial neighborhood. Specifically, investigate range queries augmented with a string similarity 
search predicate in road networks. And dub this query the spatial approximate string (SAS) query. The min-wise signature for an index 
node u keeps a concise representation of the union of q-grams from strings under the sub-tree of u. Analyze the pruning functionality of 
such signatures based on the set resemblance between the query string and the q-grams from the sub-trees of index nodes. For queries 
on road networks, using a novel exact method, RSASSOL, which significantly outperforms the baseline algorithm in practice. The 
RSASSOL combines the q-gram based inverted lists and the reference nodes based pruning. Extensive experiments on large real data 
sets demonstrate the efficiency and effectiveness of our approaches. 
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1. Introduction 
 
Keyword search over a large amount of data is an important 
operation in a wide range of domains. In practice, keyword 
search for retrieving approximate string matches is required 
[4], [6], [9], [11], [17], [18], [22]. Since exact match is a 
special case of approximate string match, it is clear that 
keyword search by approximate string matches has a much 
larger pool of applications. Approximate string search is 
necessary when users have a fuzzy search condition, or a 
spelling error when submitting the query, or the strings in 
the database contain some degree of uncertainty or error. In 
the context of spatial databases, approximate string search 
could be combined with any type of spatial queries. In this 
work, focus on range queries and dub such queries as Spatial 
Approximate String (SAS) queries. Denote SAS queries in 
Euclidean space as (ESAS) queries. Similarly, extends SAS 
queries to road networks (referred as RSAS queries). 
 
Object ranking is a popular retrieval task in various 
applications. In spatial databases, ranking is often associated 
to nearest neighbor (NN) retrieval. Given a query location, 
we are interested in retrieving the set of nearest objects to it 
that qualify a condition (e.g., restaurants). Assuming that the 
set of interesting objects is indexed by an R-tree, we can 
apply distance bounds and traverse the index in a branch-
and-bound fashion to obtain the answer. Spatial database 
systems manage large collections of geographic entities, 
which apart from spatial attributes contain non-spatial 
information (e.g., name, size, type, price, etc.). Here study 
an interesting type of preference based approximate string 
queries, which select the best spatial location with respect to 
the quality of facilities in its spatial neighborhood. 
 
A straightforward solution to any SAS query is to use any 
existing techniques for answering the spatial component of 
an SAS query and verify the approximate string match 
predicate either in post-processing or on the intermediate 
results of the spatial search. We refer to them as the spatial 
solution. For RSAS queries, the baseline spatial solution is 
based on the Dijkstra’s algorithm. Given a query point q, the 
query range radius r, and a string predicate, we expand from 

q on the road network using the Dijkstra algorithm until we 
reach the points distance r away from q and verify the string 
predicate either in a post-processing step or on the 
intermediate results of the expansion. We denote this 
approach as the Dijkstra solution. Its performance degrades 
quickly when the query range enlarges and/or the data on the 
network increases. This motivates us to find a novel method 
to avoid the unnecessary road network expansions, by 
combining the prunings from both the spatial and the string 
predicates simultaneously.  
  
A straightforward solution in both ESAS and RSAS queries 
is to build a string matching index and evaluate only the 
string predicate, completely ignoring the spatial component 
of the query. After all similar strings are retrieved, points 
that do not satisfy the spatial predicate are pruned in a post-
processing step. We dub this the string solution. First, the 
string solution suffers the same scalability and performance 
issues (by ignoring one dimension of the search) as the 
spatial solution. Second, we want to enable the efficient 
processing of standard spatial queries (such as nearest 
neighbor queries, etc.) while being able to answer SAS 
queries additionally in existing spatial databases, i.e., a 
spatial-oriented solution is preferred in practice in spatial 
databases. 
 
Another interesting problem is the selectivity estimation for 
SAS queries. The goal is to accurately estimate the size of 
the results for an SAS query with cost significantly smaller 
than that of actually executing the query itself. Selectivity 
estimation is very important for query optimization purposes 
and data analysis and has been studied extensively in 
database research for a variety of approximate string queries 
and spatial range queries [1]. 
 
 Computing edit distance exactly is a costly operation. 
Several techniques have been proposed for identifying 
candidate strings within a small edit distance from a query 
string fast. All of them are based on q-grams and a q-gram 
counting argument. For a string σ, its q-grams are produced 
by sliding a window of length q over the characters of σ. To 
deal with the special case at the beginning and the end of σ, 
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that have fewer than q characters, one may introduce special 
characters, such as “#” and “$”, which are not in _. This 
helps conceptually extend σ by prefixing it with q − 1 
occurrences of “#” and suffixing it with q − 1 occurrences of 
“$”. Hence, each q-gram for the string σ has exactly q 
characters. These q-grams are used for searching. 
 
2. Problem Formulation 
 
 Formally, a spatial database P contains points with strings. 
Each point in P may be associated with one or more strings. 
For brevity and without loss of generality, here we assume 
that each point in P has one associated string. A data set P 
with N points is the following set:{(p1, σ1), . , (pN, σN)}. 
Different points may contain duplicate strings. In the sequel, 
when the context is clear, we simply use a point pi to denote 
both its geometric coordinates and its associated string. 
 
A spatial approximate string (SAS) query Q consists of two 
parts: the spatial predicate Qr and the string predicate Qs. In 
this paper concentrating on using range queries as the spatial 
predicate. In the Euclidean space, Qr is defined by a query 
rectangle r; in road networks, it is specified by a query point 
q and a radius r. In both cases, the string predicate Qs is 
defined by a string σ and an edit distance threshold τ. 
  
Let the set Ar = {px|px ∈ P ∧px is contained in r} if P is in 
the Euclidean space; or, Ar = {px|px ∈ P∧d(q, px) ≤ r} if P is 
in a road network and d(q, p) is the network distance 
between two points q and p.  
 
Let the set As= {px|px ∈ P∧ε(σ, σx) ≤ τ}. 
 
We define the SAS query as follows: An SAS query Q: (Qr, 

Qs) retrieves the set of points A=Ar∩As. The problem of 
selectivity estimation for an SAS query Q is to efficient and 
accurately estimate the size |A| of the query answer. We use 
σp to denote the associated string of a point p.  
 
3. Proposed Work 
 
The main objective of the paper is to rank the objects based 
on the features in their spatial neighbourhood. In this paper, 
a study of an interesting type of preference based spatial 
approximate string queries are made, which select the best 
spatial location with respect to the quality of facilities in its 
spatial neighborhood. Spatial database systems manage large 
collection of geographic entities, which apart from spatial 
attributes contain non-spatial values like size, type, price etc. 
In this paper, a study of an interesting type of preference 
queries is made, which selects the best spatial object with 
respect to the quality of features in its spatial 
neighbourhood. 
 
Given a set D of interesting objects, a spatial preference 
query retrieves the k objects in D with the highest scores. 
The score of an object is defined by the quality of features 
(facilities or services) in its spatial neighbourhood. The user 
wishes to find a food facility that may be hotel or restaurants 
also with different types of transport facility can input these 
purposes as spatial query. For each hotel ‘P’ will defined in 
terms of (i) the maximum quality for each feature in the 

neighbourhood region of the particular position ‘P’ and (ii) 
the aggregation of those user requirements. 
 
Here propose, (i)spatial ranking, which ranks the objects 
according to their distance from a reference point (ii)non-
spatial ranking, which ranks the objects by aggregating all 
the non-spatial values(size, price, type), (iii) neighbour 
retrieval, In spatial database, ranking is often associated to 
nearest neighbour (NN) retrieval. Given a query location, we 
are interested in retrieving the set of nearest objects to it that 
qualify a condition (example: restaurants).Assuming that the 
set of interesting objects is indexed by an R-tree, then apply 
distance bounds and traverse the index in a branch and 
bound fashion to obtain the answer, (iv)spatial query 
evaluation on R-tree, which is the most popular spatial 
access method ,which indexes Minimum Bounding 
Rectangles (MBR'S) of objects. R-tree can efficiently 
process main spatial query types, including spatial range 
queries, nearest neighbour queries, and spatial joins. The 
spatial preference query integrates these four types of 
ranking in an intuitive way. 
 
In this case, since the locations of points are constrained by 
the road network and represented by the edge holding the 
point and the distance offset to the edge end, the MHR-tree 
is not applicable in this context. In order to handle large 
scale datasets, we adopt a disk-based road network storage 
framework and develop external-memory algorithms. 
Partition a road network G = {V,E} into m edge-disjoint 
subgraphs G1,G2, . . . ,Gm, where m is a user parameter, and 
build one string index (FilterTree) for strings in each 
subgraph. We also select a small subset VR of nodes from V 
as reference nodes: they are used to prune candidate 
points/nodes whose distances to the query point q are out of 
the query range r. 
 
 Conceptually, our RSAS query framework consists of five 
steps .Given a query, 
step 1.find all subgraphs that intersect with the query range. 
step 2.use the FilterTrees of these subgraphs to retrieve the 
points whose strings are potentially similar to the query 
string.  
step 3. prune away some of these candidate points by 
calculating the lower and upper bounds of their distances to 
the query point, using VR.  
step 4. prune away some candidate points using the exact 
edit distance between the query string and strings of 
remaining candidates  
step 5.for the remaining candidate points, we check their 
exact distances to the query point and return those with 
distances within r. 
  
 We dub this algorithm RSASSOL. We use d(o1, o2) to 
denote the network distance of two objects o1, o2 (where an 
object can be a network vertex, or a point on the network). 
 
Algorithm: RSASSOL (network G, Qr = (q, r), Qs 
=(σ,τ)) 
 
1 Find the set X of ids of all subgraphs intersecting (q, r); 
2 Set A = ∅, AC = ∅ 
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3 for each subgraph id i ∈ X do 
4 Find all point ids in GC whose associated strings σ′ 
may satisfy ε(σ′, σ) ≤ τ using FilterTreei, and insert 
them into AC 
5 for every point pi ∈ AC do 
6 calculate d+ (pi, q) and d−(pi, q)  
7 if d+ (pi, q) ≤ r then 
8 if ε(σi, σ) ≤ τ then 
9 move pi from Ac to A 
10 else 
11 delete pi from Ac 
12 else 
13 if d−(pi, q) > r then 
14 delete pi from Ac 
15 for every point pi ∈ Ac do 
16 if ε(σi, σ) > τ then 
17 delete pi from Ac; 
18 Use algorithm to find all points p’s in Ac 

 such that d(p, q) ≤ r, push them to A 
19 Return A. 
 
3.1 Query processing 
 
First, we find all subgraphs that intersect with the query 
range. We employ the Dijkstra’s algorithm to traverse nodes 
in G (note that we ignore points on G), starting from the 
query point q. Whenever this traversal meets the first node 
of a new subgraph, we examine that subgraph for further 
exploration. The algorithm terminates when we reach the 
boundary of the query range (defined by the distance r to 
q). For each subgraph Gi to be examined, we use the 
approximate string search over Gi’s FilterTree as the next 
pruning step, to find points from Gi that may share similar 
strings to the query string. Then we further prune the 
candidate points using the spatial predicate, by computing 
lower and upper bounds on their distances to q using VR. 
Given a candidate point p on an edge e = (ni, nj), the 
shortest path from p to a reference node nr must pass 
through either ni or nj . Thus, the network distance d(p, nr) 
= min(d(p, ni) + d(ni, nr), d(p, nj) + d(nj, nr)). We 
compute d(p, nr) on the fly rather than explicitly storing the 
distance between a point and a reference node since the 
number of points is much larger than the number of the 
nodes in G. By doing so, we avoid significant space blowup. 
We can also compute d(q, nr) in a similar way. Given d(p, 
nr) and d(q, nr) for every nr ∈VR , we then obtain the 
distance lower and upper bounds between p and q using the 
triangle inequality. Each reference node yields such a pair of 
lower and upper bounds. We take the maximum (minimum) 
value from the lower (upper) bounds of all reference nodes 
as the final lower (upper) bound of d(p, q), denoted as 
d−(p, q) and d+(p, q) respectively. If d+(p, q) ≤r, we 
know for sure p satisfies the spatial predicate and we only 
need to check the exact edit distance as the last measure; if 
d−(p, q) >r, we can safely remove p; otherwise, we need to 
check both the exact edit distance and compute d(p, q) to 
complete the verification on p. After the pruning by d−(p, 

q) and d+(p, q), we compute the exact edit distances on the 
remaining candidate points in AC and prune away points 
whose edit distances to the query string σ are larger than 
τ. Note that for a point p satisfying d+(p, q) ≤r and the 
exact edit distance threshold, it has already been removed 
from AC and pushed to A before this step. For all other 
remaining candidates AC, we only need to compute the exact 
network distances between them and q to complete the 
algorithm. The naive solution is to apply the algorithm for 
every p ∈AC and q to find their shortest path. However, this 
can be prohibitive when |AC| is still large. Next, we 
introduce an improvement to the shortest path algorithm, 
which computes multiple shortest paths, within the query 
range, simultaneously at once between a single source point 
s and multiple destination points {t1, . ,tm}. 
 
3.2 Selectivity estimation of RSAS queries 
 
The selectivity estimation of range queries on road networks 
is a much harder problem than its counterpart in the 
Euclidean space. Several methods were proposed in [15], 
[25]. However, they are only able to estimate the number of 
nodes and edges in the range. None can be efficiently 
adapted to estimate the number of points in the range. One 
naive solution is to treat points as nodes in the network by 
introducing more edges. This clearly increases the space 
consumption significantly (and affects the efficiency) since 
the number of points is typically much larger than the 
number of existing nodes. 
 
4. Literature Survey 
 
 The most popular spatial access method is the R-tree [3], 
which indexes minimum bounding rectangles (MBRs) of 
objects. R-trees can efficiently process main spatial query 
types, including spatial range queries, nearest neighbor 
queries, and spatial joins. Given a spatial region W, a spatial 
range query retrieves from D the objects that intersect W. 
The IR2-tree was proposed in [13] to perform exact keyword 
search with kNN queries in spatial databases.  
 
The IR2-tree cannot support spatial approximate string 
searches, neither their selectivity estimation was addressed 
therein. Two other relevant studies appear in [7], [12] where 
ranking queries that combine both the spatial and text 
relevance to the query object were investigated. Another 
related work appears in [2] where the LBAKtree was 
proposed to answer location-based approximate keyword 
queries which are similar to our definition of spatial 
approximate string queries in the Euclidean space. The basic 
idea in the LBAK-tree is to augment a tree-based spatial 
index (such as an R-tree) with q-grams of sub tree nodes to 
support edit-distance based approximate string/keyword 
searches. The LBAK-tree returns exact answers for the 
ESAS queries, and the MHR-tree returns approximate 
answers. That said, for ESAS queries, the LBAK-tree should 
be adopted when exact answers are required; when space 
consumption must be small and approximate solutions are 
acceptable, the MHR-tree is the candidate. 
 
RSAS queries and selectivity estimation of SAS queries have 
been explored before in the literature [3]. Approximate 

Paper ID: 02014580 1732



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 6, June 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

string search alone has been extensively studied in the 
literature [4], [5], [6], [8], [9], [11], [14], [17], [18], 
[19],[21], [22], [23]. These works generally assume a 
similarity function to quantify the closeness between two 
strings. There are a variety of these functions such as edit 
distance and Jaccard. Many approaches leverage the concept 
of q-grams. q-gram based pruning for edit distance that has 
been used extensively in the field [14], [19], [21], [24]. 
Improvements to the q-grams based pruning has also been 
proposed, such as vgrams[22], where instead of having a 
fixed length for all grams variable length grams were 
introduced, or the two-level q-gram inverted index [16]. 
 
The problem in our paper is different: we want to search in a 
collection (unordered set) of strings to find those similar to a 
single query string (“selection query”). Our effort for 
selectivity estimation in ESAS queries is also related to 
selectivity estimation for spatial range queries [1],[15]. 
Several methods for selectivity estimation for range queries 
on road networks were proposed in [3], [20]. However, they 
are only able to estimate the number of nodes and edges in 
the range (not the number of points residing on the network 
in the range). Here we extend these techniques for points 
and combine them with string predicate. Also, they deal with 
a single feature dataset whereas our queries consider 
multiple feature datasets.  

 
5. Conclusion 
 
 This paper presents a comprehensive study for spatial 
approximate string queries in both the Euclidean space and 
road networks. We use the edit distance as the similarity 
measurement for the string predicate and focus on the range 
queries as the spatial predicate. We also address the problem 
of query selectivity estimation for queries in the Euclidean 
space. We study an interesting type of preference based 
approximate string queries, which select the best spatial 
location with respect to the quality of facilities in its spatial 
neighborhood. 
 
6. Future Work 
 
Future work include examining spatial approximate sub-
string queries, designing methods that are more update 
friendly and solving the selectivity estimation problem for 
RSAS queries. 
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