
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Developing Software Maintenance Workbench
Lokhande Rahul1, Waychal Pradeep2

1Department of Computer Science and Information Technology, College Of Engineering Pune,
Wellesely Rd, Shivajinagar, Pune - 411 005, Maharashtra, India

Abstract: This document gives overview of Maintenance work. There is so much necessity of maintenance. It explains different types
of maintenance. Different Causes of defects. How to handle these defects? And explains how to teach defect fixing? Main purpose is to
reduce maintenance cost and making maintenance easy. Following this technique makes maintenance easy.

Keywords: Software maintenance, Defect fixing.

1. Introduction

In today’s world use of computer, mobile, laptop, tablet is
tremendously increasing.in previous days computer was only
used for military and research purpose. Huge progress in
computer and other electronics devices such as mobile
phone, tablet, and laptop made these devices very cheaper
[3]. And also low cost and high intelligence made these
devices to be used in most of the industries and almost all
sections. Due to high demand and verities in software there
are certain bugs in software, which are necessary to be fixed.
Some defects can be fixed easily but some are hard to detect
as well as to fix.

Today many researches are going on finding the defects in
given software. Students are taught to ways of finding
defects in software but actual practical knowledge of student
is low compared to theoretical one [5]. We are developing a
system which adds defects in software and students will fix
those defects using some previous knowledge. In this way
student will learn how to find different defects. And
practicing of finding defects will speed up their ability of
finding defects.

2. Maintenance

Software maintenance: software maintenance is the process
of modification of a software code after delivery of product
in order to correct faults. In previous days about 85 % of
total cost was spent on hardware. Near about 10 % of total
cost spent on software and very few amount was spent on
maintenance [8]. That means maintenance was given less
important. It affects quality of software. Maintenance is very
important part of software lifecycle. Later on software
maintenance got high importance. To improve quality of
software maintenance is become one of the most important
units.

Maintenance can be classified into four classes:

2.1 Corrective maintenance

Corrective maintenance includes correcting existing errors
[10]. If for some functionality software is giving wrong
output then those errors should be fixed. It is practically not
possible to test entire functionality of large software system.
There it is obvious that system will have defects.

2.2 Adaptive maintenance

In this maintenance changes are related to software
environment such as DBMS, OS [4]. In adaptive
maintenance changes are related to OS and DBMS, if
environmental requirement is not specified in advanced and
client is not sure about in which environment the software is
going to be used. Then this kind of defects occurs. For
change of environment and OS, program has to be changed
in most of the part. To avoid this ask client about exact use
of software

2.3 Perfective maintenance

Clients are never satisfied, they always want enhancement in
existing code so that the product will become perfect in all
aspects [5]. Perfective maintenance has to perform in order
to make software perfect in all aspects. Sometime changes
are minor, they do not effect on performance but still client
want them to be fixed for better quality e.g. GUI related
problems.

Paper ID: 02014550 1395

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.4 Preventive Maintenance

Some changes have no direct effect on the user, but these
changes will help for future maintenance [1]. These changes
will increase reliability for better future development.
Technology changes day by day. So in order to walk with
the technology we have to change some part of the code so
that to avoid future maintenance.

3. System Design and Implementation

3.1 Original Source Code

The source code should be big enough so that finding and
fixing the defects should not be easy task. And number of
defects we can add may be considerably large.

3.2 Finding Defects

First task is to find defects in given code [2]. We studied
different types of defects in given area. After that we found
these types of defects in given code.

3.3 Adding Defects

As we have source code and list of defects we can add
defects easily. Scan list of defect line by line [11]. And for
each line open file and add defects into the file. To remove
defects from file we need to study different types of defects?
Why they occur? What is its effect on the performance and
accuracy of the code? How to remove these defects? Which
tools are useful?

3.4 Verifying results:

Now check the original defect file with the defect file
submitted by student [8]. How many defects he has found?
How many defects he missed? Is there any new defect which
is already exists in original source code. Now practicing this
way will increase student’s ability to find defects.

4. Defects Covered

4.1 Un-initialized variable

In C language if variable is not initialized the compiler will
initialize it to any random value. Thus program will get
compiled successfully i.e. it will not throw any error. But it
will show incorrect output.

4.2 Safe Synchronization

If any resource is locked before its use then it should be
unlocked after its use otherwise it may lead to deadlock so it
is necessary that each LOCK should be always followed
UNLOCK.. If one LOCK is not followed by UNLOCK then
resource is not freed so other process let’s say Process A will
not be able to use this resource though resource is not busy.
So the A process will wait indefinitely for that resource. This
leads deadlock

4.3 Memory Leak

Memory leak is an important defect in software mainly in
operating system [9]. It occurs if memory is allocated but not
released after its job is over. If memory is not released after
its job is over then a small amount of memory is still busy
and it cannot be allocated by system again. In this way each
time some memory is wasted. At a particular instant, there is
no free memory available to allocate. In this case system will
hang.

4.4 Null Pointer Dereferencing

If memory is allocated for some variable and assigned to any
pointer then before assigning value to variable, it should be
checked that value of pointer is not null [6]. If in some case
malloc fails then it will return NULL and we cannot assign
any value to memory address null. Many programmers
allocate memory and directly assign value to variable
without checking whether memory is allocated or not. Many
of them assume that each time memory will get allocated but
it is not the case always.

5 Conclusion and Future Work

It is observed that finding defect in given code is very
challenging task. It takes too much time for finding defect in
code for new person, though he has basic knowledge of
defect. It happens because of lack of practical knowledge
and training. After using this system students were initially
taking too much time for each defect. But after more
practicing, the time required to find defect is reduced
considerably. So it increased students’ ability to find defect
and increased their logical thinking. In future work more
types of defect can be added, so that it will cover almost all
types of defects, finding defect is an time consuming task it
may be done automatically. Also checking whether defects
are properly fixed or not, may be checked automatically.

References

[1] Code decay - Stephen G. Eick, Todd L. Graves, Alan F.
Karr, J.s. Marron, and Audris Mockus, “Does code
decay? Assessing the evidence from change
management data”, IEEE Transactions on Software
Engineering, 27(1), pages 1-12, 2001.

[2] Suresh Kothari, Ahmed Tamrawi, Kang Gui, “Event
Flow Graphs to Verify Absence of Vulnerabilities and
Malicious Behaviors”, IEEE transactions on software
engineering, manuscript id

Paper ID: 02014550 1396

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[3] Timo Koponen “Evaluation of Maintenance Processes
in Open Source Software Projects through Defect and
Version Management Systems”, ISBN 978-951-781-
988-6

[4] S. Neginhal and S. Kothari, “Event views and graph
reductions for understanding system level c code,” in
ICSM ’06: Proc. of the 22nd IEEE International
Conference on Software Maintenance, 2006, pp. 279–
288.

[5] K. Gui and S. Kothari, “A 2-phase method for
validation of matching pair property with case studies
of operating systems,” in IEEE 21st

[6] Sigmund Cherem, Lonnie Princehouse and Radu
Rugina, “Practical Memory Leak Detection using
Guarded Value-Flow Analysis” ACM New York, NY,
USA ©2007 Pages 480-491

[7] Bjarne Steensgaard, “Points-to analysis in almost linear
time. In Proceedings of the ACM Symposium on the
Principles of Programming Languages”, St.
Petersburg Beach, FL, January 1996.

[8] Cherem, S., Princehouse, L., and Rugina, R. (2007a),
“Practical memory leak detection using guarded
value-flow analysis”. In Proceedings of the 2007
ACM SIGPLAN conference on Programming
language design and implementation, PLDI '07, pages
480{491, New York,NY, USA. ACM.

[9] Yulei Sui Ding Ye Jingling Xue, “Static Memory Leak
Detection Using Full-Sparse Value-Flow Analysis”,
ISSTA ’12, July 15-20, 2012, Minneapolis, MN,
USA.

[10] Christopher J. Rossbach, Owen S. Hofmann, Donald
E. Porter, Hany E. Ramadan, “TxLinux: Using and
Managing Hardware Transactional Memory in an
Operating System” ACM New York, NY, USA
©2007, Pages 87-102

[11] David Hovemeyer, Jaime Spacco, and William Pugh,
“Evaluating and T uning a Static Analysis to Find
Null Pointer Bugs”, ACM New York, NY, USA
©2005, Pages 13 – 19

Author profile

Mr Rahul K. Lokhande received a B.Tech from Modern
College of Engineering Pune. He is currentely M.Tech
student at College of Engineering,Pune,India.

Dr Pradeep K. Waychal received a B.E. from College of
Engineering, Pune, M. Tech from IIT Delhi and Ph.D from
IIT Bombay. He is currently working as professor at
college of Engineering, Pune, India.

Paper ID: 02014550 1397

