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Abstract: In this paper Reynolds Averaged Navier-Stokes (RANS) approach have been employed so as to come up with a model 
capturing an MHD turbulent flow over a vertical plate provided the effect of viscous dissipation, Radiation and Joule Heating. The 
model equation for mean velocity and temperature in turbulent are not time dependent consequently, the Model turns out to be coupled 
highly non linear ODE 
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1. Introduction 
 
Magnetic fields influence in many natural and man-made 
flows. H.Alfvén had discoveries in magnetohydrodynamics 
with fruitful applications in different parts of plasma physics. 
The simplest form of MHD, Ideal MHD, assumes that the 
fluid has so little resistivity that it can be treated as a perfect 
conductor. This is the limit of infinite magnetic Reynolds 
number. In Ideal MHD, Lenz's law dictates that the fluid is 
sense tied to the magnetic field lines. The theoretical study of 
MHD flows has been a subject of great interest due to it's 
widely spread application on designing of cooling systems 
with liquid metals, petroleum industry, purification of crude 
oil, separation of matter from fluids and many other 
applications. Rotation viz MHD phenomena plays an 
important role in various phenomena like meteorology, 
geophysical fluids dynamics, gaseous and nuclear reactions. 
Formally, MHD is concerned with the mutual interaction of 
flow of an electrically conducting fluid and magnetic fields. 
The fluids in question must be electrically conducting and 
non-magnetic, which limits us to liquid metals, hot ionized 
gases (plasmas) and strong electrolyte. Model Study of 
effects of Hall currents on fluid flows have been discussed by 
various people, Recently Ayube et al [2], Seth et al 
[15].Beside, following Smolentsey and Morean [14] A two 
eddy-viscosity based models for MHD flows in a strong 
magnetic field when turbulence becomes Q2D have 
developed. Diaz et al[5] Consider a mathematical model 
related to the stationary regime of a plasma of fusion nuclear, 
magnetically confined in a stellarator device.Emad M.et al[3] 
presented a Model on MHD-free convection laminar flow 
with viscous incompressible fluid with power-law variation 
in surface temperature and during analysis the effects for 
viscous dissipation and Joule heating taken into account. And 

Mohammed A.et al[10] also came up with a mathematical 
modeling which dealt with MHD natural convection flow 
along a vertical flat plate in the presence of Joule heating. 
Kafousias and Daskakis [11] modeled and investigates the 
influence of both viscous and Joules dissipation on the 
magnetohydrodynamic convection flow in the stoke problem. 
Ola W.[12] considered one-point turbulence closure have 
been extended with an additional transported scalar for 
modeling MHD turbulence. If turbulence is entirely and 
chaotic, it would be inaccessible to any kind of mathematical 
treatment; almost all the situation of turbulence fluid motion 
can be mathematically modeled. Large Eddy simulation 
(LES)[13,8] is an approach used to model turbulent flows. In 
the present work we propose to carry out the modeling of 
Hydromagnetic flow over infinite vertical plate in Rotating 
System Under The influence of Viscous Dissipation, Joule 
Heating and Radiation together so as to extend and 
consolidate the aforementioned work of others and by doing 
this so we shall be able to broaden the formulation one step 
ahead than it was before along the area modeling such 
problems. Instead of the using LES approach we are 
proposed to use Reynolds averaged Navierstokes (or RANS) 
methods-the today's workhorse and research for industrial 
and research turbulence modeling application Joel[7]; this 
approach helped us in order to capture the turbulence 
characterized by random fluctuation and eddies.  
 
2. Governing Equations Laminar Flow 

Scnario  
 
With spatial coordinate’s z and time, the Navier-stokes and 
continuity equations for the instantaneous velocity field 
velocity filed ( , )iu z t  of an incompressible fluid are, 
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following Ola W. [12]: 
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And, the thermal energy equation as given by  
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The electromagnetic equation that help in model and 
formulate MHD problem are Maxwell's equation and Ohm's 
law. Generally they are well discussed in any book on 
electromagnetic theory. here they are adopted as presented by 
Neff. [4] 
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and Ohm's law for a moving conductor taking hall current 
into account : 

0

( ) [ ]e eJ J B E u B
B
ω τ σ+ × = + ×

   
              (5) 

 

3. Description of the Flow 
 
In the present study MHD flow past infinite vertical plate in 
rotating system in presence of a strong magnetic field is 
considered. The magnetic field is applied transversely along 
the z-axis and perpendicular to vertical plate. The plate in 
non-conducting and the fluid is electrically conducting. At 

 the vertical plate is set into impulsive motion in its 
own plane(x-axis) at a constant velocity . The transverse 
inhomogeneous magnetic field is in the direction. The 
vertical plate is kept at a higher temperature than the fluid is 
in . Fluid flow is assumed incompressible, 
Newtonian electrically conducting. The flow being studied is 
free convectional and takes place along the -axis is under 
the action of transverse variable magnetic field. The 
boundary layer thickness is along the -axis hence the 
velocity components will changes along it. In Figure 1: The 
Geometry of the problem has depicted. It is assumed that the 
plate and the fluid are in a rigid body rotation with constant 
angular velocity, , about the . B.L. and F.S. are 
designated to be a Boundary layer and Free stream.  is the 
gravitation force.  is applied magnetic field.  

 

 
Figure 1: The Geometry of the Model 

The flow of is takes place in two dimensions in general; as a 
result we anticipate the fluid variables to be depend on two 
coordinate space and that was why the geometry of the flow 
depicted in 3D coordinate space. The velocity  and v are 
depends on  . the velocity  does not change along . 
For the magnetic field, for it to have an effect on the flow it 
must act in the direction perpendicular to the flow region. 
The velocity vector ),  
and  in fact before the flow become turbulent the 
third velocity component,  along was there. the magnetic 
field is . The situation over the surface of the 
plate, , the boundary condition, the plate is moving and 
as same time rotating hence we set ,  and the 
temperature of the plate maintained constant at fixed 
temperature then we shall have . The faraway from 
the plate     and because the 
geometry the effect of gravity that when the bouncy force 
effect come into consideration.  
 
It's been seen that the velocity and temperature over the 
surface of the plate and of the free stream has already 
captured earlier and our very concern is to know what is 
actually going to happen in between. The Model which can 
only work for laminar scenario is as 
:
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4. Turbulence Modeling 
 
All flows encountered in engineering applications, from 
simple ones to complex three dimensional ones, become 
unstable above a certain Reynolds number. In turbulent flow 
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the hydrodynamic and thermodynamic characteristics 
undergo chaotic fluctuation and hence, vary highly 
irregularly in space and time.(from the smallest turbulent 
eddies characterized by Kolmogorov micro-scales, to the 
flow features comparable with the size of the geometry). A 
turbulent (outwardly disordered) regime of fluid motion 
arises as a laminar flow loses its stability when the 
dimensionless Reynolds number  (where U and L 
are the characteristics velocity and Linear length scale of the 
flow, respectively,  is the molecular kinematic viscosity) 
exceeds some critical value  or turbulence arises either 
from the growth with small perturbation in a laminar flow or 
from the convective instability of motion.  is the most 
general characteristics of a turbulized fluid.  
 
Joel [7] There are several possible approaches for the 
numerical simulation of turbulent flows. The first and most 
intuitive one, is by directly numerically solving the governing 
equations over the whole range of the turbulent scales 
(temporal and spatial). This deterministic approach is 
referred as Direct Numerical Simulation (DNS). In DNS, a 
fine enough mesh and small enough time-step size must be 
used so that all of the turbulent scales are resolved. Although 
some simple problems have been solved using DNS, it is not 
possible to tackle industrial problems due to that prohibitive 
computer cost imposed by the mesh and time-step 
requirements. Hence, this approach is mainly used for 
benchmarking, research and academic applications.Another 
approach used to model turbulent model flows is Large Eddy 
Simulation (LES). Here, large scale turbulent structures are 
directly simulated whereas the small turbulent scales are 
filtered out and modeled by turbulence models called subgrid 
scale models. According to turbulent theory, small scale 
eddies are more uniform and have more or less common 
characteristics; therefore, modeling small scale turbulence 
appears more appropriate, rather than resolving it. the 
computational cost of LES is less than that of DNS.  
 
In the RANS, equations are derived by decomposing the flow 
variables of the governing equation into time-mean (obtained 
over an appropriate time interval) and fluctuating part, and 
then time averaging the entire equations. Time averaging the 
governing equations gives rise to new terms, these new 
quantities must be related to the mean flow variables through 
turbulence models. This process introduces further 
assumption and approximations. The turbulences models are 
primarily developed based on experiment data obtained from 
relatively simple flows under controlled conditions. This in 
turn limits the range of applicability of the turbulence 
models. That is, no single RANS turbulence model is capable 
of providing accurate solution over a wide range of flow 
condition and geometries. Hereafter, we limit our discussion 
to Reynolds averaging.  
 
4.1 Reynolds Averaging of the Model  
 
In turbulent flow, the transport phenomena variables 

 always vary with time. The 
instantaneous velocity value for a general flow variable say 
velocity  for a turbulent flow of moving fluid, provided for 

any location  can be expressed as summation of its 
Mean and its Fluctuation due to the small perturbation: 
 

 where 
                (7)  

is the Time-averaged velocity at point  The time 
interval for the Time-averaged, , must be very long 
compared with the duration of fluctuation. The mean value of 
the fluctuation must be zero,  

              (8)  
Similarly, the velocity components in the y- and z- direction 
can be expressed as: 

  
 and 

 
The model equations discussed in the previous section can be 
transformed into Reynolds averaging equations to govern 
turbulent flow. The Reynolds's averaging rules shall be used 
to transform equations governing laminar flow to turbulent 
flow. Time averaging of transport phenomena equations 
should provide the net effect of the turbulent perturbation. 
 
Note that for turbulent flow, the model equations are not time 
dependent - since after time averaging of the momentum and 
energy equations, the term involving ,  and 

 vanish i.e. become zero automatically; The model 
equations for the mean velocity and temperature in turbulent 
flows are not time dependent. For instance following Scott 
[16] 

0idu
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=                                            (9) 

 
4.1.1Time Averaged Continuity Equation  
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4.1.2 Time-Averaged Momentum Equation  

-direction momentum equation is : 
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Multiplying continuity equation by  as: 
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and adding to the above equation  
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Averaging over period 0 t→ ∆  
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Then, Consequently from (9) 
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Substituting for '( ), '( )u u u t v v v t= + = + , 

'( )w w w t= + and '( )T T T t= +  
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-direction momentum equation is : 
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4.1.3 Time-Averaged Energy Equation: 
From (6.1-6.3)  
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Now, for tow-dimensional turbulent boundary time-averaged 
equations   and , we also must take note 
the geometry of the problem together with the following : 
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The set of equation in  are incompressible Reynolds-
Average-Stokes (RANS) equation. Notice that in equations 
the mean variables are independent of time. The Molecular 
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5. Boussinesq Approximation  
 
The Reynolds averaged approach to turbulence modeling 
requires that the Reynolds stress in the above to be 
appropriately modeled (however, it is possible to derive its 
own governing equation, but it is much simpler to model this 
term). 
Let’s write these terms as a function of  &  we 
need a function such that: 

 
 
To go forward we adopt the Boussinsq approximation  

 
 is not a property of the fluid like  but depends on the 

mean velocity . we use the semi empirical methods to 
resolve the Reynolds shear stress terms in equations; and that 
lead us to the study and use of the Prandtly mixing length 
hypothesis which for a long time has been an important tool 
in the analysis of turbulent boundary layers. 
 
The Reynold shear  represents the flux of -
mmomentum in the direction of . Prandtly assumed that this 
momentum was transported by eddies which moved in the -
direction over a distance  without interaction (  
momentum is assumed to be conserved over distance ) and 
then mixed with existing fluid at the new location 
McComb[9] 
From His experiment Prandtl deduce that: 

 
At this stage further assuming are taken   where n is 
the Von Karman constant,  McComb[9]. 
We thus finally have  

 
Thus, the approximation of the terms due to the turbulence 
effect for our model shall be: 
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Model Turbulence equation  
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With the Boundary condition  

wTTvUu ===   ,0  ,0 , at z = 0, 

∞=== TTvu   ,0  ,0 , as z → ∞. 
Following Cogley et al. [1], we assume the fluid medium is 
optically thin with a relatively low density and the radiative 
heat flux qr is given as 

)(4 2
∞−−=

∂
∂ TT

z
qr ε ,  

where ε << 1 is the radiation absorption coefficient. The 
model energy balance equation then become: 

2 2 2
2

2

2 2 2 2 2
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4 ( ) ...
Pr

( ) ( ) 0
(1 )

t

p p

d T d n z du dT T T
dz dz dz dz

du dv B u mv v mu
c dz dz c m

α ε

µ σ
ρ ρ

∞

 
+ + − + 

 
   − + +   + + =       +       

 

Following Marchello and Toor [6], for high turbulence 
intensity, the turbulent Prandtl number is given as 

PrPr =t .  
Dimensionless Variables and Quantities:  
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∞
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∞

∞

−
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Ω
= = = =

−
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Note: 
R = Rotational parameter 
Ec= Eckert number 
Gr = Grashof number, 
Nr = Radiation parameter 
M = magnetic field parameter 
m = Hall parameter 
Pr = Prandtl number 
Prt = Turbulent Prandtl number 
n = von Karman constant ( = 0.4) 
 
Dimensionless Model Equations:  
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 (17.3) 

with 
1  ,0  ,1 === θVU , at η = 0, 

0  ,0  ,0 === θVU , as η → ∞. 
The coupled highly non -linear ordinary 
differential .(18.1)equ - .(18.3)equ  equations are the final 
equations Turbulence model equations  
 
6. Conclusion  
 
We have developed the RANS-MHD modeling flow over a 
plate in rotating system given the effect of viscous 
dissipation, Joule heating and Radiation as a heat source ; 
This model enables us to analyze the momentum and the 
temperature dynamics provided variation of the set of values 
of the aforementioned parameters. Moreover along the model 
the turbulence effect -eddy viscosity has been properly 
captured into the model. Since turbulence flow has got vital 
application in area of engineering hence its noteworthy to 
realize how such model vitally useful. 
 
7. Future Scope of the Work  
 
Due to the tremendous need in the area of modeling of 
phenomena's & applications in industrial, meteorological, 
and oceanographical, consequently the present work could be 
possibly extended to further studies; As recommended 
approach we suggest that similar modeling can be carried out 
by considering a porous medium embedded into the system 
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and applying a strong variable magnetic field in the flow 
region. Moreover the work could have also extend in such a 
way that assuming conditions leading to Q2D turbulence; 
such flows demonstrate the Hartmann layers at the walls 
perpendicular to the magnetic field and the core, where the 
flow is essentially two-dimensional.  
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