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Abstract: Accelerated Failure Time (AFT) models can be used for the analysis of time to event data to estimate the effects of covariates 
on acceleration/deceleration of the survival time. The effect of the covariate is measured through a log-linear model taking logarithm of 
the survival time as the outcome or dependent variable. Hence, the effect of covariate is multiplicative on time scale, and the results of 
AFT models may be easier to interpret as the covariate effects are directly expressed in terms of time ratio (TR). Some AFT models are 
applied to the data on time to death of hospitalized Acute Liver Failure (ALF) patients in All India Institute of Medical Sciences, New 
Delhi, India to identify the prognostic factors. This type of study is being carried out for the first time in Indian population using 
retrospective data of ALF patients using AFT models. 
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1.Introduction 
 
Though proportional hazards (PH) models are popular in the 
analysis of survival data, the assumption of such models that 
the hazards are proportional is seldom met. This problem is 
more acute if one has many predictors and all predictors in a 
multivariate analysis were to meet the PH assumption. Also, 
the parametric forms of PH models are available only for a 
few regression models such as exponential, Gompertz and 
Weibull in PH metric. Otherwise the choice is the Cox’s 
semi-parametric form of PH model. There are parametric 
survival models for which the restrictive assumption of 
proportional hazards is not required. Further, Parametric 
survival models possess some advantages such as utilization 
of full likelihood to estimate the parameters, providing 
estimates in terms of survival instead of hazards of the 
outcome. Parametric AFT model is one such model, and 
most commonly used are Exponential, Weibull, Log-
logistic, Lognormal and Generalized Gamma AFT models. 
Exponential and Weibull parametric models can work both 
in proportional hazards metric and in AFT metric. Log-
Logistic, Lognormal and Generalized Gamma models work 
only in AFT metric. Generalized Gamma distribution is 
same as Weibull and Lognormal distribution as special 
cases.  

AFT survival models could provide a more suitable 
description of the data if one is able to identify the 
distribution of survival time that is appropriate in a given 
situation. They have been applied for the analysis of clinical 
trials data used in license application of oseltamvir for the 
treatment of influenza infection in adults [1]. A series of 
tutorial papers give a comprehensive introduction to the 
analysis of time to event data discussing relative merits and 
demerits of proportional hazards (PH) and AFT models in 
clinical trials data on cancer [2], [3] and [4]. Though AFT 
models are commonly encountered in manufacturing and 

industrial research, they are yet to find frequent applications 
in medical and clinical research. Aalen (2000) stressed that 
the attention should be given to the application of AFT 
models in clinical research [5]. 
 
Parametric approach offers more in the way of predictions, 
and the AFT formulation allows the derivation of a time 
ratio, which is arguably more interpretable than a ratio of 
two hazards [6]. In this communication, we present some 
parametric AFT models which are selected on the basis of 
exploratory analysis applied for specifying a mathematical 
model for Acute Liver Failure (ALF) data. To the best of our 
knowledge, this is the first such study of identifying the 
important prognostic factors for ALF patients in Indian 
population using retrospective data by applying AFT 
models.  
 
ALF is characterized by severe and sudden liver cell 
dysfunction leading to coagulopathy and hepatic 
encephalopathy in previously healthy persons with no 
known underlying liver disease [7]. It often affects young 
people and carries a very high mortality [8]. Liver transplant 
is the only treatment modality for ALF patients and it 
involves huge expenditure besides requirement of technical 
expertise and facilities. Such a modality is not yet widely 
practiced in India though some tertiary care centers have 
started liver transplantations recently. It is in this context 
that the identification of prognostic factors through 
appropriate survival model is important, so that patients 
needing the transplant could be identified and prioritized for 
the limited transplant facilities available.  
 
2. Description of the Dataset 
 
The data are taken from original proformae of 1099 (452 
survived and 647 died) hospital admitted ALF patients from 
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the liver clinic of the All India Institute of Medical Sciences 
(AIIMS) from the period May 1986 to December 2005. 
However, only 1026 cases with information available on all 
covariates were considered for final analyses. The follow up 
time varied from 1 to 30 days with median survival time of 7 
days. Fifteen demographic and biochemical variables (Table 
1) recorded at admission time are used for analysis. 
Continuous covariates are categorized on the basis of 
clinically meaningful cut offs. Time period (1986 –2005) is 
divided into three groups 1986 - 1992, 1993 - 1999 and 2000 
– 2005, coded as 1, 2 and 3 respectively and used as a 
covariate in the analysis for any adjustment needed due to 
the possible drifts in the quality of care with respect to time. 
Analysis was implemented on Stata 11.1.  

3. Selection of Appropriate Survival Model 
 
Two mostly used exploratory methods to identify the 
appropriate survival model were used in this work. The first 
method is based on the shape of the baseline hazard 
function, which is one of the fundamental indicators to 
identify appropriate parametric survival model. If we 
observe the baseline hazard function (Figure 1) of ALF data, 
the shape of hazard function looks closer to the classical 
shape of hazard function of unimodal Log-Logistic survival 
model or Lognormal survival model as hazard function 
increases initially and then decreases. The shape of hazard 
indicates that ALF data might be modeled by either Log-
Logistic or Lognormal survival model. 
 

 
Figure 1.Curve of baseline hazard function 

 
Another exploratory technique is through plot of 
appropriately transformed survival function with log of 
survival time which is described below. A random variable 
T, representing survival time follows Log-Logistic 
distribution with shape parameter k and scale parameter θ if 
its probability density function is: 
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A particular form of unimodal hazard function with shape 
parameter k and scale parameter θ is: 
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If k ≤ 1, hazard function decreases monotonically. If k >1, 
hazard function has a single mode 
The survival function corresponding to the hazard function 
is given by: 
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The transformation of survival function which leads to a 
straight line plot is log-odds of survival function i.e. 
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The survival function for the given data is estimated using 
Kaplan-Meier estimate. If the plot of estimated log-odds of 
survival function against loge(t), is straight line, then Log-
Logistic survival model would be appropriate. Estimates of 
the parameters θ and k of Log-Logistic distribution can be 
obtained from the intercept and slope of the straight line plot 
comparing equation (5) with simple linear regression of the 
form y = a + bx , where y and x are the log-odds of survival 
function and log of survival time respectively.  
Figure 2(a) shows that the plot is reasonably a straight line 
showing the good fit of straight line (R2 = 0.97) and 
parameters θ = -2.55 (a = - θ = 2.55) and k = 1.28 (b = - k = -
1.28). The straight line plot (Figure 2(a)) with parameter k > 
1 (1.28) also helps to justify the appropriateness of Log-
Logistic survival model.  
 
The suitability of Lognormal survival model is also 
investigated in a similar manner as done for Log-Logistic 
survival model but with different transformation of survival 
function to make the function linear is as follows: 
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standard Normal distribution.
 

The plot of Φ-1{1-S(t)} Vs. loget should give a straight line 
of the form y = a + bx if the lognormal survival model is 
appropriate, where, y = Φ-1{1-S (t)}, a = -µσ-1 , b = σ-1 and x
= loget. 
 
The plot of Φ-1{1-S(t)} Vs. loget is also reasonably a straight 
line (Figure 2(b)) showing the good fit of straight line (R2 = 
0.96) which indicates that the suitability of Lognormal 
model would also be logical. It should be noted that there is 
very little difference observed in the extent of departures 
from linearity in the plots in figure 2(a) and figure 2(b). 
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Figure 2: (a). Least Square estimates of Figure2 (b). Least 

Square estimates of Lognormal distribution 
Log - Logistic distribution 

 
On the basis of the above explained exploration, the survival 
times of ALF patients may either suitably explained by Log-
Logistic or Lognormal survival model as the shape of 
baseline hazard function seems to be quite similar to the 
shape of hazard function of either of these two survival 
models. Final choice of the model will depend on building 
model with covariates and assess the goodness of fit through 
log-likelihood, Akaike’s information criterion [9], Cox-Snell 
residuals plot, R2 type statistic etc. 
 
4.The AFT Model 
 
AFT model is a failure time model which can be used for the 
analysis of time to event data. The model works to measure 
the effect of covariate to “accelerate” or to “decelerate” 
survival time. The effect of covariate is multiplicative on 
time scale in AFT model whereas it is multiplicative on 
hazard scale in proportional hazard models.
The survival function for a group of patients with covariates 
(x1, x2… xp) can be expressed as: 
S(t) = S0(φt), where S0(t) is the baseline survival function 
and φ is an acceleration factor defined to be: 

φ = exp {(β1x1i + β2x2i + ……. + βpxpi)} (7) 
The ratio of two survival time is constant for any given 
survival probability. In order to explain this concept, let us 
take an example of ALF data with one independent predictor 
cerebral edema with two levels 0 for absence of edema and 1 
for presence of edema. The proportion of patients who have 
survived in the group with edema at any time point t1 is the 
same as the proportion of those who are survived in the 
edema absence group at any time t2 = φt1 i.e. the ratio of 
time t1/t2 = φ = constant 

The log-linear form of the AFT model shows the 
mathematical relation between the log of time and set of 
covariates expressed as 

e i 0 1 1i 2 2i p pi ilog (T ) = β + β x + β x +........+ β x + σε  (8) 

Where β0 is the intercept, 0 1 2 pβ , β , β ,........, β  are 

unknown coefficients of the values of p explanatory 
variables for ith individuals, σ is the scale parameter, and the 

quantity i is a random variable used to model the deviation 

of values of Loge (Ti) from the linear part of the model. i is 

assumed to have a particular probability distribution 
according to the probability distribution supposed to be 
followed by the survival time under study. 

The AFT model is fitted by applying the maximum 
likelihood estimation method by using iterative Newton-
Raphson procedure [10] and [11]. 
For the sake of simplicity and ease of interpretation, the 

exponentiated regression coefficients ( iexp(β ) ) called time 

ratio (TR) is recommended to report like HR is reported in 
proportional hazards models. TR > 1 for a covariate implies 
that this slows down or prolongs the time to the event and 
TR < 1 for a covariate indicates the occurrence of earlier 
event is more likely. For further detail explanation with 
practical examples applying AFT models, please see (Collett 
D. 2003; Hosmer & Lemeshow 1999; Klein and 
Moechberger 1997) [10], [11] and [12]. 
 
4.1 Multivariate Analysis 
 
Significant variables in univariate analysis adjusting for time 
period (TP) were considered in the multivariate Log-
Logistic and multivariate Lognormal AFT model. Same set 
of ten variables (age, pregnancy status, total serum bilirubin, 
cerebral edema, hepatic encephalopathy grade, prothrombin 
time, serum creatinine, etiology, AST and ALT) came out at 
least marginally significant (p ≤ 0.10) in univariate analysis 
for both the models. 
 
Stepwise forward selection procedure with entry probability 
0.05 and removal probability 0.051 was implemented in both 
models. Both final multivariate Log-Logistic and Lognormal 
AFT model also picked up the same six variables (Table 2) 
after adjusting for the time period. The Time Ratio (TR), 
standard errors of these variables and their 95% confidence 
intervals are given in Table 2. 
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Table1: Demographic and biochemical summary of ALF patients 

  
*Some information of some of the variables’ could not be available.  
 
4.2 Goodness of Fit of the Model 
 
The overall fit of the AFT model is evaluated by using the 
diagnostic plot of Cox-Snell residuals [13]. The Cox Snell 
residuals are calculated by using cumulative hazard H(ti, β, 
σ) function and standardized residual as: 

 

i 0 i i
i
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σ̂                  
 (9) 

Where 0
ˆ ˆ ˆβ , β and  σ  are the maximum likelihood estimates 

of 0β , β and σ , respectively. 

Cox- Snell residuals for Log-logistic AFT model [10] will 
be 

  = log 1 exp( )i irc rs
               

 (10) 

For Lognormal AFT model, Cox-Snell residuals [10] is 

  = - log 1 ( )i irc rs
                

 (11) 

Where (.)  is the cumulative distribution function of the 

standard Normal distribution. In the Cox-Snell residuals 
plot, if the plotted points lie on a line that has an intercept 
zero and slope unity, then it indicates that the fitting of the 
model is good[10]. 
 
It can be observed that Cox-Snell residuals plot (Figure 4(a), 
4(b)) for both AFT models are almost identical. For most 
part, the plotted points follow referent line. Based on these 
diagnostic plots, it would appear that both Log-Logistic and 
Lognormal AFT models provide a reasonable fit to the ALF 

data. However slight deviation of curve from 45 degree line 
is observed. This deviation might be because of reduced 
effective sample caused by prior failures and hospital 
censoring. 
 

Table 2: Multivariate analysis using Log-Logistic and 
Lognormal AFT model 

Variable 
Log-Logistic AFT model Lognormal AFT model

TR (95% C.I.) SE TR (95% C.I.) SE 
Cerebral Edema 

Absent 
Present 

 
1.00 

0.47 (0.41 0.54) 

 
 

0.03 

 
1.00 

0.47 (0.41 0.54) 

 
 

0.03 
Total Serum 

Bilirubin (mg/dl) 
< 15 
≥ 15 

 
 

1.00 
0.71 (0.63 0.81) 

 
 
 

0.05 

 
 

1.00 
0.72 (0.64 0.82) 

 
 
 

0.05 
Prothrombin time 

(sec.) 
< 25 
≥ 25 

 
 

1.00 
0.68 (0.59 0.77) 

 
 
 

0.04 

 
 

1.00 
0.68 (0.59 0.78) 

 
 
 

0.04 
Age (years) 

< 40 
≥ 40 

 
1.00 

0.74 (0.62 0.87) 

 
 

0.06 

 
1.00 

0.74 (0.63 0.87) 

 
 

0.06 
Serum creatinine 

(mg%) 
≤ 1 
> 1 

 
 

1.00 
0.75 (0.65 0.86) 

 
 
 

0.05 

 
 

1.00 
0.76 (0.66 0.87) 

 
 
 

0.05 
Etiology 

Hepatitis E 
Other 

 
1.00 

0.79 (0.68 0.93) 

 
 

0.06 

 
1.00 

0.81 (0.69 0.94) 

 
 

0.06 

 

Characteristic Total Died (%) Characteristic Total Died (%) 
 Overall 1099 647 (58.9)   
Age (years):  
 < 40 = 0 
 ≥ 40 = 1 

 
928 
171 

 
513 (55.3) 
134 (78.4) 

Etiology*: 
 Hepatits E virus = 0 
 Non E = 1 

 
338 
744 

 
161 (47.6) 
472 (63.4) 

Sex: 
 Male = 0 
 Female = 1 

 
478 
621 

 
285 (59.6) 
362 (58.3) 

Albumin (gm%)*: 
 > 3.5 = 0 
 ≤ 3.5 = 1 

 
194 
798 

 
101 (52.1) 
459 (57.5) 

Pregnancy: 
 Male = 0 
 Not pregnant = 1 
 Pregnant = 2 

 
478 
381 
240 

 
285 (59.6) 
234 (61.4) 
128 (53.3) 

 
Urea (mg%):  
 ≤ 50 = 0 
 > 50 = 1 

 
 

965 
134 

 
 

570 (59.1) 
77 (57.5) 

Total Serum bilirubin (mg/dl): 
 < 15 = 0 
 ≥ 15 = 1 

 
 

602 
497 

 
 

292 (48.5) 
355 (71.4) 

 
AST (IU)*: 
 ≤ 300 = 0 
 > 300 = 1 

 
 

473 
517 

 
 

249 (52.6) 
308 (59.6) 

Cerebral Edema: 
 Absent = 0 
 Present = 1 

 
494 
605 

 
191 (38.7) 
456 (75.4) 

ALT (IU)* 
 ≤ 470 = 0 
 > 470 = 1 

 
445 
553 

 
250 (56.2) 
313 (56.6) 

Hepatic encephalopathy grade : 
 Gr. I & II = 0 
 Gr. III & IV = 1 

 
 

215 
884 

 
 

76 (35.4) 
571 (64.6) 

Pre-encephalopathy 
 period (days)*: 
 No PEP = 0 
 1 – 7 = 1 
 ≥ 8 = 2 

 
 

18 
530 
527 

 
 

11 (61.1) 
288 (54.3) 
337 (63.9) 

Prothrombin time (seconds)*: 
 < 25 = 0 
 ≥ 25 = 1 

 
578 
519 

 
281 (48.6) 
365 (70.3) 

Icterous to Encephalopathy interval (days)*: 
 No IEI = 0 
 1 – 4 = 1 
 ≥ 5 = 2 

 
132 
474 
477 

 
82 (62.1) 
266 (56.1) 

294 1.6) 
Serum creatinine (mg%)*: 
 ≤ 1 = 0 
 > 1 = 1 

 
767 
273 

 
427 (55.7) 
183 (67.0) 
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Other methods of assessing the goodness of fit of AFT 
model include R2 type statistic and Akaike’s information 
criterion (AIC). The R2 type statistic can be calculated as 
follows: 







  )](

2
exp[1 0

2
pp LL

n
R             (12) 

Where Lp is the log likelihood for the fitted model with p 
covariates, and L0 is the log likelihood for model zero, the 
model with no covariates.  
 
The value of R2 for Log-Logistic model came out to be 0.38, 
implying that 38% of full log likelihood is explained by this 
AFT model. Similarly, the value of R2 for Lognormal AFT 
model is 0.39. There is little to choose between these two 
models on the basis of R2 type measure. 
 
AIC, the method of assessing the goodness of fit of AFT 
model is computed as follows. 
 

AIC = -2LL + 2(a + c)                  (13) 
 
Where LL = Log-likelihood of the model, a, number of 
parameters of the assumed probability distribution (for 
example; a = 2 for Log-Logistic AFT model as there are two 
parameters involved) and c, the number of coefficients 
(excluding constant) in the final model. A model with 
smaller value of AIC can be considered as a better model 
compared to other models under consideration. The 
computed value of AIC for Log-Logistic AFT model is 
2150.56 and for Lognormal AFT model is 2133.09. On the 
basis of AIC, Lognormal AFT model seems to be the better 
choice as its AIC is less than that of Log-Logistic AFT 
model. 

 

 
Figure 4: (a) Cox-Snell residuals plot for Fig 4(b) Cox-Snell 
residuals plot for Lognormal AFT model Log-Logistic AFT 

model  

5.Discussion and Conclusion 
 
In the area of medical research, the widely used regression 
model for time to event data is Cox PH model because of its 
familiarity and convenience [14] and [15]. AFT models are 
conventionally used in reliability theory and industrial 
experiments. It is not necessary that proportional hazards 
model is a priori preferable to AFT models [16]. AFT 
models are attractive option when either hazard function 
themselves are of primary interest, or when relative times 
instead of relative hazards are the relevant measures of 
association [17]. Ease of interpretation of TR may be 
another benefit especially for clinicians. Further, AFT 
models are of keen interest because they can be rewritten 
specifying a direct relation between survival time in 
logarithm scale and the predictors which is analogous to a 
multiple linear regression does [18]. However, the 
estimation of these models is carried out by assuming a 
distribution of the survival time. If the distribution of 
survival time is not recognized, then estimation based on 
AFT models becomes questionable. Stute (1993) proposed 
an AFT model with the important characteristic that it 
allows to estimate and make inference about the parameters 
of the model without assuming the distribution of the 
survival time, which is usually unknown [19]. Orbe et al 
(2002) checked the performance of Stute’s method in two 
different data sets one satisfying PH assumption and another 
not satisfying PH assumption [18]. The estimates obtained 
from Stute’s method were also compared with known AFT 
models and found Stute’s estimates were more precise. 
However, further research needs to be carried out on Stute’s 
AFT model [18]. 
 
In our ALF data set, the shape of baseline hazard function 
and the exploratory analysis clearly matching with the shape 
of either Log-Logistic or Lognormal AFT model. Both AFT 
models are picking up same covariates in multivariate 
analyses and giving almost same TR for each covariate with 
exactly same standard errors.  
 
AFT models provide an estimate of TR which helps 
clinicians to translate the treatment benefit in terms of an 
effect on expected duration of illness. In this data set the TR 
for cerebral edema 0.47 indicates that the survival times for 
ALF patients with presence of cerebral edema are estimated 
to be 47 percent of those for ALF patients with absence of 
edema. In other words, same can be interpreted as the 
survival time for subjects with presence of cerebral edema is 
estimated to be 53 percent shorter than for subjects with 
absence of cerebral edema and they could be between 59 and 
46 percent shorter. The interpretation of TR for other 
covariates can also be made in similar fashion. 
 
If one is interested to see the effect of covariate in survival 
time of the patients, AFT models would be the best 
alternative if the distribution of survival time is recognized. 
It is not necessary to explore Cox PH model as a prerequisite 
exploration in order to apply AFT model. Only the 
precaution must be taken to identify the probability 
distribution of the time so that miss specification of 
distribution should not. On the basis of log likelihood, AIC 
and R2 type statistics we come to the conclusion that our data 
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is adequately fitted by Lognormal AFT model as AIC of 
lognormal model is less than that of Log-Logistic model.  
 
Lognormal AFT model suggests that presence of cerebral 
edema, total S. bilirubin ≥15mg/dl, prothrombin time ≥25 
sec, age ≥ 40yrs, Serum creatinine >1mg% & non E virals 
are prognostic factors showing considerable association with 
survival time in both the models. 
 
We suggest that results from AFT models are easier to 
interprete not only for hepatologists but also for other 
clinicians for more appropriate explanation of survival data 
and hope this exercise of ours would generate interest 
among medical statisticians leading to more AFT 
applications.  
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