
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 6, June 2014 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Modeling the Inflation Rates in Liberia SARIMA 
Approach

Roland Fannoh1, George Otieno Orwa2 Joseph K. Mung’atu3

1Pan African University Institute of Basic Science Technology and Innovation, 
P.O Box 62000 00200 Nairobi - Kenya 

2, 3Department of Statistics and Actual Science 
Jomo Kenyatta University of Agriculture and Technology 

P.O Box 62000 – 00200, Nairobi – Kenya  

Abstract: Inflation measures the relative changes in the prices of commodities and services over a period of time. It is necessary to 
know the pattern of inflation in the country in order to formulate better policies that will control the inflation rates. In this paper, we 
used Box – Jenkins methodology to build an ARIMA model for Liberia’s monthly inflation rates for the period January 2006 to 
December 2013 with a total of Ninety Six (96) data points. The result showed that ARIMA 12)0,0,2)(0,1,0( model was appropriate for 
modelling the inflation rates. ARCH-LM test and Ljung-box test performed on the residuals showed no evidence of ARCH effect and
serial correlation respectively. Lastly, a 12 months forecast for the year 2013 with the model revealed that Liberia is likely to experience 
single digit inflation values. In glow of the forecasted result, we recommend that vigorous monetary policies and appropriate economic 
measure be adopted by government and some policy makers to make certain that the single digit inflation values aim is met. 
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1.Introduction 

Inflation is one of the economic variables that have received 
much attention in Time Series Modelling. Inflation is often 
caused by an increase in the supply of money, usually 
measured by the Consumer Price Index and the Producer 
Price Index. Over time, as the cost of goods and services 
increase, the value of a dollar falls because a person won't be 
able to purchase as much with that dollar as he/she 
previously could. The annual rate of inflation has fluctuated 
greatly over the last half century, ranging from nearly zero 
inflation to 23% inflation. Inflation reflects a reduction in the 
purchasing power per unit of money. Policy makers will be 
very happy if they could know the pattern of these inflation 
values. Empirical research has been carried out in the area of 
forecasting using Seasonal Autoregressive Integrated 
Moving Average (SARIMA) models proposed by Box and 
Jenkins (1976). The forecasting advantage of SARIMA 
model compared to other time series models have been 
investigated in many studies. For instance, Aidan et al (1998) 
used SARIMA model to forecast Irish inflation, Junttila 
(2001) applied ARIMA model approach in other to forecast 
Finnish inflation, Pufnik and Kenova (2006) applied 
SARIMA model to forecast short term inflation in Croatia. 
Shulze and Prinz (2009) applied SARIMA model and Holt - 
Winters exponential Smoothing approach to forecast 
container transshipment in Germany, the results show that 
SARIMA approach yields slightly better values of modeling 
the container throughout than the exponential smoothing 
approach.

 Nasiru et al (2012) used an empirical approach for 
modelling and forecasting inflation in Ghana. They used 
monthly data and modelled using Seasonal Autoregressive 
Integrated Moving Average (SARIMA) stochastic model. 
The best model that was identified for the inflation rates was 
ARIMA (3, 1, 3) (2, 1, 1)12. An eleven month forecast was 

made and it was concluded that the country is likely to 
experience single digit inflation for the year 2012. F.K. 
ODuro et al (2012) conducted a study on application to 
microwave transmission of Yeji-Salaga (Ghana). They 
applied the Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model to analyze the monthly data. The 
results showed that ARIMA 12)2,1,0)(1,1,1(  was the best 
fitted model. Inflation was found to be integrated of order 
one and follow the (6, 1, 6) order. Inflation was predicted 
highest for the months of March, April and May to be 8.95%, 
10.07% and 10.24% respectively. 

2.Methodology

Inflation has been one of the contributing factors that slow 
the economic growth in Liberia. In this research we analyze 
ninety six (96) monthly observations of inflation rate from 
January 2006 to December 2013. The data was obtained 
from the Research Department of the Central Bank of 
Liberia (CBL) and the Statistic department of the Liberia 
Institute of Statistic and Geo - Information Services 
(LISGIS). The seasonal ARIMA model incorporates both 
non-seasonal and seasonal factors in a multiplicative model 
which is the generalization of the well known Box and 
Jenkins ARIMA model and it was used to model the data. An 
ARIMA model is a combination of Autoregressive (AR) 
which shows that there is a relationship between present and 
past values, a random value and a Moving average (MA) 
model which shows that the present values has something to 
do with the past residuals. A nonseasonal ARIMA model is 
classified as an “ARIMA (p, d, q)” model where the first 
parameter p refer to the number of autoregressive lags, the 
second parameter d refers to the order of integration that 
make the data stationary and the third parameter q give the 
number of moving average lags (see Pankratz, 1983; Hurvich 
and Tsai, 1989; Hamilton, 1994; Kirchgassner and Wolters, 
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2007; Kleiber and Zeileis, 2008, Pfaff, 2008). Thus, the 
SARIMA model is sometimes called the multiplicative 
seasonal autoregressive integrated moving average model 
and it is denoted as ARIMA (p, d, q) (P, D, Q) s. This can be 
written in the lag form as (Halim and Bisono, 2008). 
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Where p, d and q are the order of non-seasonal AR, 
differencing and MA respectively and P, D and Q are the 
order of the seasonal AR, differencing and MA respectively. 

ty  represent the observable time series data at time t, t
represent white noise1 error (random shock) at period t, B 
represent the backward shift, where mtt

m yyB  and S 
represent seasonal order, s=12. 
Identification, estimation of parameters and diagnostic 
checking are the three steps that are involves in model 
estimation. 

3.Model Identification 

We determine the possible SARIMA model that best fit the 
data under consideration. SARIMA model is appropriate for 
stationary time series therefore, the data under consideration 
must satisfy the condition of stationarity that is the mean, 
and variance and autocorrelation are constant throughout. 
The values of p, d, q, P, D, Q are determine at this step by 
using the Autocorrelation function (ACF) and the Partial 
Autocorrelation Function (PACF). The theoretical PACF has 
non – zero partial autocorrelation at lags 1, 2, p and has zero 
partial autocorrelations at all lags for any non-seasonal 
ARIMA (p, d, q) process. The ACF and the PACF has spikes 
at lag ks and cuts off after lag ks at the seasonal level. The 
number of significant spikes suggests the order of the model. 
For seasonal MA component the ACF shows a significant 
spike at seasonal lags while for seasonal AR component, the 
PACF shows significant spikes at the seasonal lags. The 
values of D and d are the number of times the data was 
seasonally and non – seasonally differenced. 

4.Estimation of Parameters 

The identification process having led to the formulation of 
the model, we then need to obtain efficient estimates of the 
parameters. For the model estimate we considered the model 
with the minimum values of Akaike Information Criterion 
(AIC), modified Akaike Information Criterion (AICc) and 
the Normalized Bayesian Information Criterion (BIC) was 
consider as the best model. 

4.1 Diagnostic Checking 

After estimating the parameters of our chosen model, the last 

step is model diagnostics. At this stage we determine the 
adequacy of the chosen model. These checks are usually 
based on the residuals of the model. One assumption of the 
SARIMA model is that, the residuals of the model should be 
white noise. The ACF of the residuals is approximately zero, 
when the residuals are white noise. If the assumption is not 
fulfilled then the different model must be searched to satisfy 
the assumption. Several statistical tools such as Ljung - Box 
Q statistic, ARCH - LM test and t-test can be used to test the 
hypothesis of independence, constant variance and zero 
mean of the residuals respectively. Ljung-Box statistic
proposed by Ljung and Box (1978) is used to check if a 
given observable series is linearly independent. The test 
usually checks if there is higher order serial correlation in the 
residuals of a given model. The null hypothesis of linearly 
independence of the series is examined by the test. ARCH-
LM test of Eagle (1982) and SHAPIRO NORMALITY test 
can also be used to check for conditional homoscedasticity 
and normality among the residuals respectively.  

4.2 Unit Root Test 

There are several formal and informal method that can be 
used to determine whether the series is stationary or non 
stationary. For this case, we will consider the Augmented 
Dickey-Fuller (ADF) test which is one of the precise formal 
ways of testing for stationary and non stationary. The 
augmented Dickey-Fuller (ADF) test is a test for unit root in 
time series model and it is an extension of Dickey-Fuller test 
for large and complicated time series model. To test for unit 
root, we assume that: 

)()1()( 1 BBB pp  
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outside the unit cycle. Therefore, the Augmented Dickey – 
Fuller test equation is giving as: 
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With the null hypothesis given as 1:0 H  and 

0:0 H  against the hypothesis 

4.3 Seasonal Unit Roots Test 

The most common approach that is used to determine if the 
seasonal behavior in the data is deterministic, stochastic or 
stationary under the seasonal frequencies is the one of 
Hylleberg et al (1990). The approach was extended by 
Franses (1990) to be applied to monthly time series. As it is 
discussed in Franses (1991), the seasonal differencing 
operator 12  will have 12 roots on the unit circle. Seasonal 

frequencies in monthly data are
6

,
3

5,
3

,
3

2,
2

,  .

Testing for both seasonal and non seasonal unit roots is also 
implied in testing for the significant of i . The t-test is used 

to test the separate s' of the null hypothesis. It is a one 
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sided t-test that 01  and 02   of the null hypothesis 
respectively. The two sided t-test are use in testing for the 
null hypothesis of 12,...,3,0  ii  . The F-test is used to 

test for the joint null hypothesis that 432 ,  and  are all 

zero and that all four s'  are jointly zero 
)0( 4321   .The asymptotic distribution of 

the test statistics under the respective null hypothesis depend 
on the deterministic terms in the model. There is no seasonal 
unit root if 2  through 12 are significantly different from 

zero. If 01   then the presence of non seasonal unit root 1 
cannot be rejected. 

5.Result and Discussion 

Figure 1 and 2 below display the plots of the original data 
where the inflation rate is represented by tR  and the plots of 
the autocorrelation and partial autocorrelation functions. It 
can be seen that inflation exhibit volatility starting from 2007 
from figure 1. The volatility in Liberia inflation series can be 

endorsed by so many factors including the supply of money, 
increase of prices on the world market such as petroleum and 
the poor agriculture sector of the country. The idea that 
Liberia is an import base economy contributed a lot to these 
fluctuations. Between 2008 and 2009 there exhibit a very 
high inflation, this was because prices of essential 
commodities had increased due to high importation costs and 
transportation costs. The main group that increases in the rate 
of inflation was the food and fuel groups. After 2008 single 
digits inflation rates were experienced all through up to 2013 
at the average rate between 6.9 and 8.5 percent respectively. 
The vigorous macroeconomic reforms presented by the CBL 
were the immediate cause of the moderate rate of inflation. 
From figure 1 it can also be seen that the original series is 
non stationary. It can also be seen that the original plot of the 
acf dies down in a sine wave pattern which implies that there 
is a seasonal and non seasonal components of the series and 
as such the SARIMA model is required, while the pacf in 
figure 2 tail down at lag 1. 
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Figure 1: Monthly Inflation Rates of Liberia (2006:1-2013:12)
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Figure 2: PACF and AFC of Liberia Monthly Inflation Rates (2006:1-2013:12) 
Since SARIMA modelling requires that the series be 
stationary, therefore we have to test for stationarity by using 
the unit root test in inflation series as describe above. We 
apply the method of Augmented Dickey- Fuller (ADF) test 
in testing for stationarity. We test the null hypothesis that the 
inflation rate tR  is not stationary or has unit root. Table 1 
present the result from the unit root test. From the result we 
accept the null hypothesis in which the absolute value of the 
5% critical level is greater than the test statistic. Since the 
series is not stationary, we consider first differencing to 
render the series stationary and it is denoted as tY . We again 
apply the same method to check whether the series is 
stationary after considering the first difference. From the 
result of the test shown in Table 2, we can now conclude that 
it is stationary at a 5% significance level. 

Table 1: Augmented Dickey-Fuller test for unit root of the 
Inflation Rates - tR

-Interpolated Dickey-Fuller- 
Test 

Statistics 
1% critical 

value 
5% critical 

value 
10% critical 

value 
z(t) -2.245 -3.532 -2.903 -2.586 

Table 2: Augmented Dickey-Fuller test for unit root of the 
First   difference Inflation Rates - tY

-Interpolated Dickey-Fuller- 
 Test 

Statistics 
1% critical 

value
5% critical 

value
10% critical 

value
z(t) -4.164 -3.534 -2.904 -2.587 

It is now necessary to test for the behavior of the seasonality 
in the data in which case we also need to test for seasonal 
unit root. The seasonal unit root will enable us to know 
whether the data is stationary for modelling which is one of 
the requirements for modelling using SARIMA model. We 
can now use the HEGY test stated above to test for seasonal 
unit root in the series. Table 3 below present the result on our 
data from the HEGY test, from the test results, we reject the 
null hypothesis of unit root at the seasonal frequency and fail 

to reject the presence of unit root at the non - seasonal 
frequency at 5% level. This implies that the contribution 
from these seasonal components is small of the seasonal 
cycle and all the frequencies are deterministic. In this regard, 
at seasonal level, we do not need to make differences for the 
data. 

Table 3: HEGY Seasonal Unit Root Test for  tY
Constant

Auxiliary Regression Seasonal 
Frequency

Critical 
values 

Test
Statistics 

t-test: 0 0 -3.37 -0.2130 

t-test: 02   -1.94 -2.6723 

F-test: 043 
2
 3.05 8.8215 

F-test: 065 
3

2 3.05 11.1900 

F-test: 087 
3
 3.08 6.4395 

F-test: 0109 
3

5 3.08 13.3892 

F-test: 01211  3.09 6.3867 

F-test: 0,... 1221   1.88 11.7866 

F-test: 0,... 1232   2.30 10.3502 

Note: the null hypothesis seasonal unit root is rejected at 5% 
significant 

The next step is to determine the order of the AR and MA for 
seasonal and non - seasonal components following the Box 
and Jenkins procedure. This can be determine by using the 
sample ACF and PACF plots of the series as suggested by 
Box and Jenkins as described above. Figure 3 below display 
the plots of the acf and pacf of the first order differenced 
series and Figure 4 below displayed the plot of the first 
differenced series of the Monthly Inflation Rates represented 
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as tY . It can clearly be seen that after the first difference the 
data becomes stationary and from figure 3 it can also be seen 
that both acf and pacf have as a seasonal lag 12 and non 
seasonal lag 0. In such a case to make a selection with the 
model that has the minimum AICc, AIC and BIC is 

complicated therefore our next options is to use the R 
software with the algorithm function auto.arima in which the 
best model is presented in table 4. 
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Figure 3: ACF and PACF of First Order Difference 
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Figure 4: First order difference of the Monthly Inflation Rate tY

Table 4: AIC and BIC for the Suggested SARIMA 
Model AIC AICc BIC 
ARIMA

)0,0,2)(0,1,0(
1.420 54.420 31.430

Table 4, ARIMA )0,0,2)(0,1,0( could be judge as the best 
model that fit the data well. After the model has been 
identified, we then estimate the parameters. As it is shown in 
table 5, all the parameters are significant. We now checked 

the estimated model after the parameter of the model have 
been estimated as to whether it satisfies all the assumption of 
Seasonal ARIMA model which is, the residuals of the model 
must follow a white noise process meaning that the residual 
should have zero mean, constant variance and also 
uncorrelated. Figure 4.5 below display the autocorrelation 
function of the residuals of the selected SARIMA model. 
From the plot we can see that the autocorrelation of the 
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residual of the model are all zero, therefore we can conclude 
that the residuals are uncorrelated.  

The ARCH-LM test and the Ljung - Box test results are 
provided in Table 5. We can test for constant variance and 
zero mean assumptions of the residual of the selected model 
by using the ARCH-LM test. From the table 6, since the p-
value of the ARCH-LM test is greater than %5  significant 
level, we fail to reject the null hypothesis of no ARCH effect 
(homoscedasticity) in the residuals of the selected model. 
Therefore, we conclude that there is a constant variance 
among the residuals of the selected model and the true mean 
of the residuals is approximately equal to zero. Also since 
the p-values for the Ljung-Box test exceed %5 , this 
indicates that there is no significant departure from white 
noise for the residuals. Thus, we conclude that the model can 
provide an adequate representation of the data since it satisfy 
all of the necessary assumptions. 

Table 5: Estimates of Parameters for ARIMA
elmod)0,0,2)(0,1,0( 12

Parameters Estimations Standard Error P- Values 
Constant 0211.0 1581.0

1 4048.0 1099.0 ***0002.0

2 2787.0 11435.0 **0148.0

Table 6: Residuals Diagnostics Test for SARIMA model 
P - Value 

Model ARCH-LM test Ljung - Box test 
ARIMA 

12)0,0,2)(0,1,0(
4618.0 7377.0
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Figure 5: ACF and PACF plots of the Residuals of ARIMA 12)0,0,2)(0,1,0(

Finally, It can be seen that many research work have found 
that the selected model is not necessary the model that 
provides best forecasting. In this regards, it is advisable to 
perform test such as ME, RMSE, MAE, MPE etc, in testing 
the accuracy of the forecast. Table 7 present the model from 
the algorithm of Hyadman and Khandakar. The selected 
model from the approaches has been shown to satisfy all the 
model assumptions and its parameters have been estimated. 
We can conclude that the model is adequately and can be 
used to predict the inflation rates. 

Table 7: Forecast Accuracy Test on the Suggested Model 
Model ME RMSE MAE MPE MAPE MSE 
ARIMA 

12)0,0,2)(0,1,0(
-1.237 1.626 1.413 -18.051 20.117 2.644 

We conducted both in sample and out sample forecast. 

Figure 5 present the in sample forecast. From figure 5, the 
forecast show that our model was able to ape the behavior of 
the actual observations although the values were not exactly 
the same. We carry on a 12 month out sample forecast for 
the year 2013. Table 8 below summarizes the out - sample 
forecasting results of the inflation rates from the period 
January 2013 to December 2013 with a 95% confidence 
interval. 
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Figure 6: Plot of the In - Sample forecast for inflation data

Table 7: Twelve Month Out - Sample forecast for the year 
2013

Month Observed 
Values

Prediction LCL UCL 

January 8.0 9.2 4.9 13.6 
February 5.5 7.9 1.7 14.0 
March 8.4 8.8 1.2 16.3 
April 8.7 8.9 0.2 17.6 
May 6.5 9.2 -0.5 18.9 
June 7.0 8.7 -2.0 19.3 
July 7.1 9.5 -2.0 21.0 

August 7.5 9.3 -3.0 21.7 
September 8.2 9.8 -3.2 22.9 

October 8.5 8.9 -4.8 22.7 
November 7.0 8.1 -6.3 22.5 
December 8.5 7.4 -7.6 22.5 

Comparing the observed values with the prediction value, we 
can see that there is an increase in pattern and decrease in 
pattern; as such Liberia is likely to experience single digit 
inflation for the year 2014. We can clearly say that ARIMA 

12)0,0,2)(0,1,0( model is adequate to be used for 
modelling the inflation rate in Liberia since all of its 
observed values fall inside the confidence interval. 

6.Conclusion

In this study we model the inflation rates of Liberia using 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model of Box and Jenkins (1976) approach. This 
approach was employed to analyze monthly inflation rates 
from January 2006 to December 2013. The entire data set 
was divided into two parts. Eighty four (84) observations 
were used to estimates the parameters of the model and an in 
sample forecasting while the remaining twelve (12) was used 
for out sample forecasting. The best model we identified for 
the inflation rates based on the algorithm developed by 
Hyadman and Khandakar in 2008 is 
ARIMA 12)0,0,2)(0,1,0( with maximum log-likelihood and 
minimum values of AIC, AICc and BIC. ARCH-LM test and 
Ljung-box test performed on the residuals showed no 
evidence of ARCH effect and serial correlation respectively. 
Having satisfied all the model assumptions, ARIMA 

12)0,0,2)(0,1,0( was selected to be the best model for 

forecasting. A twelve month out sample forecast for the year 
2013 was conducted. In general, the out-sample forecasts 
shows a fluctuation in inflation rates. From our out-sample 
forecast, we deduced that the country (Liberia) is likely to 
experience single digit inflation for the year 2014. In glow of 
the forecasted results, we recommend that vigorous monetary 
policies and appropriate economic measures be adopted by 
government and other policy makers to make certain that 
single digit inflation value aim is met. We recommend that 
future research on this topic is of great concern and it will be 
supportive to the admittance of the performance of the model 
used in this research in terms of forecasting accuracy as 
compare to other time series models. 
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