
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Mitigation of CSRF Attack
Nikunj Tandel1, Kalpesh Patel2

1Scholar, Computer Department, LD College of Engineering, Gujarat Technological University

2Assistant Professor, L.D. College of Engineering.

Abstract: Web Application is used in our day to day life and there are several vulnerabilities in web application as per OWASP (Open
Web Application Security Project). Most of the developers are unaware about the CSRF attack therefore many web application are still
vulnerable from CSRF attack. Cross Site request forgery attack occur when the malicious web site forces a user’s browser to send
unauthorized request and perform unwanted action on a trusted web site without user’s awareness. In this paper we will study about the
CSRF attack and existing mechanisms for mitigating CSRF attack and also compare our approach with existing approaches.

Keywords: OWASP, Cross Site Request Forgery (CSRF), web application vulnerability, Mitigation techniques

1. Introduction

Web applications are one of the most prevalent platforms for
information and service delivery over the Internet today. As
they are increasingly used for critical services, web
applications have become a popular and valuable target for
security attacks. Its objective is to establish rules and
measures to use against attacks over the Internet. Web
security is a branch of Information Security that deals
specifically with security of websites, web applications and
web services.

Cross-Site request forgery (CSRF) is an attack against Web
application users where an attacker forces victim’s web
browser to perform an unwanted action on a trusted web site
via a link or other content. CSRF is listed among the top ten
web application vulnerabilities of 2013 [1]. Cross-Site request
forgery (CSRF) is also known as session riding, one click
attack and confused deputy [2]. The nature of attack is that
CSRF exploits the trust that a web application for a user.
CSRF is a vulnerability which works like a web works, due
to the fact that a CSRF attack occurs when loading HTML
elements or JavaScript code into a victim’s browser that
generates a legitimate HTTP request to a target website [2].

This paper organized as follows: Section II briefly discuss
about Cross-Site request forgery attack. Section III describes
Cross-Site Request Forgery (CSRF) versus Cross-Site
Scripting (XSS). Section IV discusses existing mitigation
techniques. Section V discusses about our proposed scheme
section VI discusses results and at the end draws some
conclusion.

2. Cross Site request forgery

Cross-Site Request Forgery (CSRF) attacks occur when a
malicious web site causes a user’s browser to send an
authorized request and perform unwanted action on a trusted
web site without the user’s awareness.
There are two types of CSRF attack.
1. Stored CSRF
2. Reflected CSRF

Stored CSRF: A stored CSRF attack is one where the
attacker can use the application itself to provide the victim

the exploit link, or other content which directs the victim’s
browser to perform attacker-controlled actions in the
application. Stored CSRF vulnerabilities are more likely to
succeed, since the user who receives the exploit content is
almost certainly currently authenticated to perform actions.

Reflected CSRF: In Reflected CSRF attack, the attacker uses
a system outside the application to expose the victim to
exploit link or content. This can done using a blog, an email
message, an instant message, or even an advertisement
posted in a public with an URL that a victim types in.

There is also new variant in CSRF attack known as Login
CSRF which we discussed later.

Figure 1: CSRF Attacks Categories until 2013 on NVD [3]

This is the chart for Stored CSRF, Reflected CSRF and
Combination attack done on web sites and web application
until 2013 on National Vulnerability Database.

Paper ID: 020131846 1416

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Working procedure of CSRF

Figure 2 and 3 show the working procedure of CSRF attack:

Figure 2: A Valid request [4]

The web browser attempts to perform a trusted action. The
trusted site confirms that the web browser is authenticated
and allows the action to be performed.

Figure 3: A CSRF attack [4]

The attacking site causes the browser to send a request to the
trusted sites. The trusted site sees a valid, authenticated
request form the web browser the trusted action. CSRF
attacks are possible because web sites authenticate the web
browser, not the user.

3.1 Login CSRF

Login CSRF is a new variation on CSRF attacks, in
which an attacker uses the victim's browser to forge a
cross-site request to the honest site's login URL, supplying
the attacker's username and password. If the forgery
succeeds, the honest server responds with a Set-Cookie
header that instructs the browser to mutate its state by
storing a session cookie, logging the user into the honest
site as the attacker. This session cookie is used to bind
subsequent requests to the user's session and hence to the
attacker's authentication credentials. Many web sites,
including Yahoo, PayPal, and Google, were vulnerable to
login CSRF.

Search History: Many search engines, including Yahoo! and
Google, allow their users to opt-in to saving their search
history and provide an interface for a user to review his or
her personal search history. Search queries contain sensitive
details about the user's interests and activities and could be
used by an attacker to embarrass the user, to steal the user's
identity, or to spy on the user. An attacker can spy on a user's
search history by logging the user into the search engine as
the attacker.

4. CSRF Vs. XSS

Cross-Site Request Forgery (CSRF) exploits the trust that a
site has for the user. The website assumes that if an ‘action
request’ was performed, it trusts that the request is being sent
by the user. In contrast, Cross-Site Scripting (XSS) exploits
the trust that a client has for the website or application. Users
generally trust that the content displayed in their browsers
was indented to be displayed by the website being viewed
link in his mail. You click and in case you are having
persistent (though not necessary) authentication cookie from
site that hacker want to manipulate, hacker would latch on it,
use your credentials and send a HTTP request to that site.
Remember the way browsers work is whenever you send a
request for a specific domain also the cookies associated to
that domain are also send across. The malicious scripts in
turn gains access to page content and start misusing it. A
simple example of XSS could be someone entering a
malicious JavaScript function in comments section of a
webpage. When other users try to fetch that page they would
also fetch malicious JavaScript and that can be devastating.

5. Existing mitigation techniques

There are few mechanisms a site can use to defend itself
against CSRF attacks: Validation a secret token, validating
the HTTP Referer header, and Origin header. None of these
mechanisms completely defend against CSRF attack.

A. Secret Validation Token

One approach to defend against CSRF attacks is to send an
additional information in each HTTP request that can be used
to determine whether the request came from an authorize
source. This ‘validation token’ should be hard to guess for
an attacker who does not already have access to the user’s
account. If a request is missing a validation token or the
token does not match the expected value, the server will
reject the request.

Random form tokens: To prevent CSRF attacks, a web
application has to make sure that the incoming data is
originated from a valid HTML form. “Valid" in this context
denotes the fact that the submitted HTML form was
generated by the actual web application. It also has to be
ensured that the HTML form was generated especially for the
submitting client. To enforce these requirements, hidden
form elements with random and unique values can be
employed. These values are used as one time tokens: The
triplet consisting of the form's action URL, the ID of the
client (e.g. the session ID) and the random form token are
stored by the web application. Whenever data is submitted,
the web application checks if this data contains a known form
token which was stored for the submitting client. If no such
token can be found, the form data has been generated by
a foreign form and consequently the request will be
denied.

Using explicit authentication: There are methods to
communicate authentication tokens explicitly: Authentication
tokens can be included into the web application's URLs or
transported via hidden fields in HTML forms. These
techniques are resistant to CSRF attacks.

Paper ID: 020131846 1417

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Drawback: The drawback of this approach is the
considerable amount of manual work that it involves.
Many current web applications have evolved into large
and complex systems, and retrofitting them with the
mechanisms necessary for token management would
require detailed application-specific knowledge and
considerable modifications to the application source code.
Even more important, there is no guarantee that the modified
code is indeed free of CSRF vulnerabilities, as developers
tend to make errors and omissions.

B. The Referer Header

An HTTP request’s Referer indicates the URL of the
webpage that contained the HTML link or form that was
responsible for the request's creation. The Referer is
communicated via an HTTP header field. The Referer header,
if present, distinguishes a same-site request from a cross-site
request because the header contains the URL of the site
making the request. A site can defend itself against cross-site
request forgery attacks by checking whether the request in
question was issued by the site itself. If this is not the case,
the request is usually rejected.

Unfortunately, the Referer contains sensitive information that
impinges on the privacy of web users [5]. For example, the
Referer header reveals the contents of the search query that
lead the user to visit a particular site. Although this
information is useful to web site owner, who can use the
information to optimize their search engine rankings, this
information disclosure leads some users to feel their privacy
has been violated. Additionally, many organizations are
concerned that confidential information about their corporate
intranets might leak to external web sites via the Referer
header.

Bugs: Historically, browsers and have contained
vulnerabilities that let malicious web sites spoof value of the
Referer header, especially in conjunction with proxy servers.
Discussions of Referer spoofing often cite [5] as evidence that,
browsers permit the Referer header to be spoofed. Mozilla
has patched the Referer spoofing vulnerabilities in Firefox
1.0.7. These vulnerabilities affect only XMLHttpRequest and
can be used only to spoof Referers directly back to the
attacker's own site.

Strictness: If a site elects to use the Referer header to defend
against CSRF attacks, the site's developers must decide
whether implement lenient or strict Referer validation.
 in lenient Referer validation, the site blocks requests

whose Referer header has an incorrect value. If a request
lacks the header, the site accepts the request. Although
widely implemented, lenient Referer validation is easily
circumvented because a web attacker can cause the
browser to suppress the Referer header. For example,
requests issued from ftp and data URLs do not carry
Referer headers.

 In strict Referer validation, the site also blocks requests
that lack a Referer header. Blocking requests that lack a
Referer header protects against malicious Referer
suppression but incurs a compatibility penalty as some
browsers and network configurations suppress the Referer
header for legitimate requests.

C. Custom HTTP Header

Custom HTTP headers can be used to prevent CSRF
because the browser prevents sites from sending custom
HTTP headers to another site but allows sites to send
custom HTTP headers to themselves using
XMLHttpRequest. For example, the prototype.js JavaScript
library uses this approach and attaches the X-Requested By
header with the value XMLHttpRequest. Google Web
Toolkit also recommends that web developers defend
against CSRF attacks by attaching a X-XSRF-Cookie
header to XMLHttpRequest that contains a cookie value.
The cookie value is not actually required to prevent
CSRF attacks: the mere presence of the header is
sufficient.
To use custom headers as a CSRF defence, a site must
issue all state-modifying requests using XMLHttpRequest,
attach the custom header (e.g., X-Requested-By), and
reject all state-modifying requests that are not
accompanied by the header. For example, to defend against
login CSRF, the site must send the user's authentication
credentials to the server via XMLHttpRequest.

D. Origin Header

To prevent CSRF attacks, browsers send Origin header
with POST requests that identifies the origin that initiated
the request. If the browser cannot determine the origin, the
browser sends the value null.
Privacy: The Origin header improves on the Referer header
by respecting the user's privacy:
 The Origin header includes only the information required

to identify the principal that initiated the request (typically
the scheme, host, and port of the active document's URL).
In particular, the Origin header does not contain the path or
query portions of the URL included in the Referer
header that invade privacy without providing additional
security.

 The Origin header is sent only for POST requests, whereas
the Referer header is sent for all requests. Simply
following a hyperlink (e.g., from a list of search results or
from a corporate intranet) does not send the Origin header,
preventing the majority of accidental leakage of sensitive
information.

By responding to privacy concerns, the Origin header will
likely not be widely suppressed.
Server Behaviour: To use the Origin header as a CSRF
defence, sites should behave as follows:
 All state-modifying requests, including login requests,

must be sent using the POST method. In particular, state-
modifying GET requests must be blocked in order to
address the forum poster threat model.

If the Origin header is present, the server must reject any
requests whose Origin header contains an undesired value
(including null). For example, a site could reject all requests
whose Origin indicated the request was initiated from another
site.

6. Proposed Approach

The existing mitigation techniques like secret token
validation, the HTTP referer header validation, custom HTTP
header validation and origin header are available to prevent

Paper ID: 020131846 1418

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

CSRF attacks and none of these mechanisms are providing
complete protection from CSRF attack. The OWASP
designed CSRF Guard a server side mechanism to prevent
against CSRF attack this approach is good but it not gives the
protection against Login CSRF attack. So I have design the
mechanism that mitigates Stored CSRF, Reflected CSRF as
well as Login CSRF.

An activity diagram of our proposed approach.

Figure 4: Comparisons with other approach

We shown erlier that most of the approaches uses Secret
Token Validation for mitigating CSRF attack but those
approach are not worked properly, so we develop our
approach that mitigate complete CSRF attack.

For that I have make a method for generating a Token, wich
generate a token with UUID (Universally Unique Identifier)
random number that appende into the Request, then we the
user send request for another time it checks for referer header
and also checks for Secret Token.

And if the referer header is not there in request or cross site
request than our approach not permit user for futher pross,
same in token validation token if user’s token is not there our
not valid than the approach not permit for further prosess.

7. Experimental Result

In this section existing token based solution such as NoForge
and CSRFGuard are compare with our approach
(secretToken + Referer Header) to determine accuracy and
robust security against Stored CSRF, Reflected CSRF and
Login CSRF.

Approaches Stored
CSRF

Reflected
CSRF

Login
CSRF

Accurate Robust
security

NoForge [10]   X Less Less
CSRFGaurd [9]   X Average Average
Our Approach    More More

8. Conclusion and Future work

We have already studied some existing mitigation techniques
to mitigate CSRF attack, Secret Validation Token is
definitely the best approach for mitigating Stored CSRF and
Reflected CSRF but these do not provide complete
protection against Login CSRF attack, or require some
modification to the existing web application that should be
protected. We propose our approach that combines both
Secret Validation Token and Referer Header Validation for
mitigating all of three Stored CSRF, Reflected CSRF and
Login CSRF. Thus, we conclude that our approach is more
accurate at mitigation and provide robust security against
CSRF attack.

References

[1] OWASP.
https://www.owasp.org/index.php/Top_10_2013-
Top_10

[2] Lin, Xiaoli, et al. "Threat Modeling for CSRF Attacks."
Computational Science and Engineering, 2009. CSE'09.
International Conference on. Vol. 3. IEEE, 2009.

[3] http://nvd.nist.gov/ (CSRF Attacks Categories until
2009 on NVD)

[4] Zeller, William, and Edward W. Felten. "Cross-site
request forgeries: Exploitation and prevention." The
New York Times (2008): 1-13.

[5] Barth, Adam, Collin Jackson, and John C. Mitchell.
"Robust defenses for cross-site request forgery."
Proceedings of the 15th ACM conference on Computer
and communications security. ACM, 2008.

[6] Siddiqui, Mohd Shadab, and D. Verma. "Cross site
request forgery: A common web application weakness."
Communication Software and Networks (ICCSN), 2011
IEEE 3rd International Conference on. IEEE, 2011.

[7] Jovanovic, Nenad, Engin Kirda, and Christopher
Kruegel. "Preventing cross site request forgery attacks."
Securecomm and Workshops, 2006. IEEE, 2006.

[8] Alexenko, Tatiana, et al. "Cross-site request forgery:
attack and defense." Consumer Communications and
Networking Conference (CCNC), 2010 7th IEEE. IEEE,
2010.

[9] Eric Sheridan. OWASP CSRFGuard Project, 2008.
http://www.owasp.org/index.php/CSRF_Guard. Mar
2009.

[10] NenadJovanovic, EnginKirda, and Christopher Kruegel.
Preventing cross site request forgery attacks. In IEEE
International Conference on Security and Privacy in
Communication Networks (SecureComm), 2006.

[11] Feil, Renaud, and Louis Nyffenegger. "Evolution of
cross site request forgery attacks." Journal in Computer
Virology 4.1 (2008): 61-71.

[12] Kombade, Rupali D., and B. B. Meshram. "CSRF
Vulnerabilities and Defensive Techniques."
International Journal of Computer Network and
Information Security (IJCNIS) 4.1 (2012): 31.

Books
[1] William, Stallings, and William Stallings.

Cryptography and Network Security, 4/E. Pearson
Education India, 2006

Paper ID: 020131846 1419

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Author Profile

Nikunj Tandel received the B.E. degree in Information
Technology from A.D. Patel Institute of Technology in
2012. Presently pursuing his M.E. from L.D. Collage of
Engineering since 2012. Currently he is doing his
dissertation in Web Security and main area is Network

Security.

Prof. Kalpesh Patel received the B.E degree in
Information Security and M.E. degrees in Computer
Engineering. Presently he is working as Assistant
Professor at L.D. College of Engineering.

Paper ID: 020131846 1420

