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Abstract: Neural networks have drawn attention to researchers in recent years .This is because they show superiority as a modeling 
technique for datasets showing nonlinear relationships and thus for both data fitting and prediction abilities. In this study we derive a 
neural network estimator of finite population mean. This study shows that the mean square error values of the neural network 
estimator are minimal compared to those of other nonparametric estimators. This implies that neural networks are a better estimation 
technique for estimating population mean.  
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1. Introduction 
 
Availability of auxiliary information to estimate parameters 
of interest of a survey variable has become very common. 
Such information is well available on census data, 
administrative registers and even on previous surveys. A 
population is the entire collection of identifiable units. Finite 
populations are of interest to government for policy making. 
 
A simple way to incorporate known population totals of 
auxiliary variables is through ratio and regression estimation. 
More general situations are handled by means of generalized 
regression estimation (Sarndal, 1980) and calibration 
estimation (Deville and Sarndal, 1992). Estimation 
procedures have been employed in getting information from 
the census data, administrative registers and other surveys. 
However, in most cases these are challenging due to cost, 
time, literacy levels and other geographical factors. In these 
methods, part of the population referred to as the sample is 
used and the information about the population is inferred into 
the sample. 
 
In this paper we introduce a new type of nonparametric 
estimator for the finite population mean based on neural 
network learning. 
 
2. A Neural Network Estimator 
 
A neural network is a nonlinear model transforming real 
input variables into one or several output variables using 
several intermediate steps. The goal is to estimate the 
population mean of the survey, that is  

 
T is the survey variable and N is the size of the population. 
 
Using calibration technique (Deville and S¨arndal (1992)), 
we can define our neural network estimator to be a linear 
combination of the observations 

 
With weights chosen to minimize an average distance 
measure from the basic design weights 

 
Minimization is constrained to satisfy 

, where  is the known vector of population 
means for the auxiliary variables. Although alternative 
distance measures are available in Deville and S¨arndal 
(1992), all resulting estimators are asymptotically equivalent 
to the one obtained from minimizing the chi-squared distance  

 
Where the are known positive weights unrelated to  , 
i.e. 

 
 Where  and  are the Horvitz-Thompson estimators of  
and , respectively, and 

 
 
Consider the following super-population model  

 
Where and  denote expectation and variance, 
respectively, with respect to ;  takes the form of a feed 
forward neural network with skip-layer connections and  
is a known function of . Hence, 

 
(1) 

M is the number of neurons at the hidden layer (Ripley, 
1996, Chapter 5). Since we consider M as fixed, we can 
denote by the set of all parameters of the network, and 
write  in (1) as ,  
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From Wu and Sitter (2001) to estimate  , the first step is to 
obtain a design-based method for estimating the model 
parameters and therefore obtain estimates of the regression 
function at , for i=1,..., N , through the resulting fitted 
values. In other words, we first seek for an estimate  of the 
model parameters  based on the data from the entire finite 
population. We then obtain  a design-based estimate of  
based on the sampled data only. The population parameter  
is defined by weighted least squares with a weight decay 
penalty term, i.e. 

 (2) 

 Where  is a tuning parameter and p is the dimension of the 
parameters vector . The estimate  is defined as the solution 
of the design-based sample version of (2), that is 

(3) 

 Once the estimates  are obtained, the available auxiliary 
information is included in the estimator through the fitted 
values , .Then, we can define 

the neural network estimator as where the 
calibrated weights are sought to minimize the distance 

measure  subject to 1 and 

=  
Using the technique of Deville and S¨arndal (1992) to derive 
the optimal weights, we can propose that  

            (4) 
Where 

 And  

We wish to combine the kernel technique to our neural 
network estimation. Therefore we briefly describe kernel 
smoothing. 
A continuous kernel is denoted as k(.) and the bandwidth as 
h. The conditional regression estimator is the solution to 
a natural weighted least squares problem being the minimizer 

 of 
                   (5) 

                           (6) 
Where 
 

 
By differentiating equation (6) with respect to  and 
equating to zero we get  

 

 

 

 

For a target 
 , we have 

 

 

 
 
Similarly  

 
So that 

 

 
i.e.  is an approximation of with a constant 
weighting value of T corresponding to 's closest to  more 
heavily. Alternatively, let =  be the n vector of 's 
obtained in the sample. Define the  matrix 

and define the  matrix 

 
Then a sample based estimator of  is given by 

 
 as long as  is invertible. 
It follows that  

 

 

 
 
We note that we can use the neural network package (nnet) 
method to obtain the mean function of the fitted values. From 
the kernel technique,  

 
The weights  are subjected to the network and learnt.  
Therefore  
 In other words  
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3. Data Analysis 
 
Using R statistical package we simulate two populations of x 
as independent and identically distributed uniform (0, 1) and 
gamma (1,1) random variables. 
 
The populations are of size N=300.Samples of size n=30 are 
generated by simple random sampling. The population size is 
considered large enough for several samples and the sample 
size is 10 percent of population size. For each population of 
x, mean function, and bandwidth, 100 replicate samples are 
generated and the estimates calculated .The population is 
kept fixed during these 100 replicates in order to be able to 
evaluate the design averaged performance of the estimators. 
We consider four mean functions: 
1. Linear  
2. Quadratic  
3. Exponential  
4.   
We report on some performance of several estimators. 
The Epanechnikov kernel 

 
is used for all four nonparametric estimators. Several 
bandwidths are considered (h=0.1, h=0.25, h=0.5, h=0.75, 
h=1 and h=2) to help see how efficiency of the estimators 
vary with bandwidth. The second bandwidth is based on the 
ad hoc rule of  the data range. The bandwidths h=1 and 
h=2 are large bandwidths relative to the data range,[0,1]. 
 
For the linear mean function,  and  the results show 
equal performance evident from equal mean squared errors 
for both uniform and gamma distributions. We therefore 
examine how much efficiency is lost if we used the other 
estimators. The other means functions represent departures 
from the linear model. 
 
For quadratic function  performs better followed by  
(linear), except for a small portion for the range of x i.e. 
for(h=0.1,h=0.5,and h=0.75  (linear) performs better 
under the gamma distribution. The biases at these turning 
points for  (linear) are seen to be less compared to those of 

 .For the exponential mean function under uniform 
distribution,  performs better followed by (linear).It is 
interesting to see the cycle and exponential mean functions 
yield similar MSE values under gamma distribution. 
 
The performance of any estimator,  in  is 
evaluated using its relative bias  and MSEs.The relative 
bias is defined as 

 
 R is the replicate number of samples. We evaluate the actual 
design variance and estimated the mean squared error as 

  
We also consider an estimate of the mean square error  

 
Where  is calculated from the  simulated sample. 
  

4. Table of Results 
 
• nn: neural network 
• loclp: Local-polynomial 
• nw: Nadaraya-Watson estimator 
 

Table1: Comparative MSEs for the nonparametric 
estimators for a sample size n=30 under uniform distribution 

uniform MSE 
of nn 

MSE 
of loclp  

MSE of  local 
linear 

MSE 
of nw 

linear 216.5325 168.6484 216.5325 216.5325 
Quadratic 44.0644 50.36182 51.19504 604.57 

Exponential 160.5052 210.0316 198.8392 397.6784 
cycle2  160.5052 210.0316 198.8392 397.6784 

Description 
Local polynomial estimator performs better than the other 
estimators under a linear mean function. But taking into 
consideration all the mean functions then the neural network 
is much better. 
 

Table 2: Comparative MSEs for the nonparametric 
estimators for a sample size n=30 under gamma distribution 

gamma MSE 
of nn 

MSE of local 
polynomial 

MSE  
of local linear 

MSE  
of nw 

linear 881.1422 11978.5 881.1422 1098.883 
Quadratic 22431.97 231829.8 628123.9 81123.79 

Exponential 887.0592 883.1512 934.2882 837.5117 
cycle2  990.9664 835.5993 721.5811 708.9674 

Description 
Local polynomial estimator performs better than the other 
estimators under a linear mean function. But taking into 
consideration all the mean functions then the neural network 
is much better performer. 
 
Table3: Comparative MSEs for the nonparametric estimators 

for a sample size n=15 under uniform distribution 
uniform MSE 

of nn 
MSE of local 
polynomial 

MSE of 
local linear 

MSE of nw 

linear 216.5325 256.4107 216.5325 437.14 
Quadratic 326.0076 228.7917 6.982688 381.1422 

Exponential 183.5677 218.4183 206.824 1052.611 
cycle2  183.5617 218.4183 206.824 413.611 

Description 
The neural network estimator and Linear Local polynomial 
estimator performs almost equally under linear mean function 
which is better than the other estimators. Taking into 
consideration all the mean functions, then the artificial neural 
network is much better performer. 
 
Table4: Comparative MSEs for the nonparametric 
estimators for a sample size n=15 under gamma distribution 

gamma MSE of nn MSEof 
local 

polynomial 

MSE_of local 
linear 

 

MSE 
of nw 

linear 881.1422 10687.12 881.1422 897.6784 
Quadratic 21805.35 1786035 2627501 1787371 
Exponential 865.6058 843.3734 1343.317 910.0316 
cycle2  783.988 884.443 659.8745 397.0045 
 

Description 
The neural network estimator and Linear Local polynomial 
estimator performs almost equally under linear mean 
function, better than the other estimators. Taking into 
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consideration all the mean functions, then the artificial neural 
network is much better performer. 
 
5. Conclusions 
 
The aim of this study was to compare the performance of a 
neural network estimator with other nonparametric 
estimators. This was achieved. Considering the MSEs of the 
various estimators, we make several observations.  
Performs exceptionally well under linear and quadratic 
functions. Also,  performs well since it’s itself linear, 
and hence is almost a true model for the linear function.  
 

, retained consistent efficiencies in most of the other 
mean functions.  
 
The only closest competitor of the neural network estimator 
is the linear local polynomial estimator. However our 
estimator is more applicable since we do not have to 
determine the degrees to use. We have also found that if the 
mean of a sample is known, then we can use this 
information to find the mean of the non-sampled elements 
which leads to overall population mean estimation. Our 
objectives have been achieved that the artificial neural 
network estimator outperforms kernel estimators and also  
 
References 
 
[1] Ripley B.D (1996) Pattern recognition and Neural 

Networks, Cambridge University Press, Cambridge.  
[2] Breidt, F.J and Opsormer, J.D.(2000).Local polynomial 

regression estimators in survey sampling. Annals of 
Statistics.28, 1026-1053. 

[3] Wu, C. and Sitter, R. R (2001).Efficient estimation of 
quadratic finite population functions in the presence of 
auxiliary information. Journal of American Statistical 
Association, 97, 535-43. 

[4] William G. Cochran (1992),Sampling Techniques, third 
edition,44-49,364-382 

[5] Godambe, V. P (1995) A Unified Theory of Sampling 
from finite populations. journal of Royal Statistical 
Society.B,17,267-278  

[6] Wu C. and Sitter R.(2001) A model-calibration to using 
complete auxiliary information from survey data, 
Journal of American Statistical Association, 185-193. 

 
Author Profile 
 
Robert Kasisi received a BSc in Mathematics and Computer 
Science from Jomo Kenyatta University of Agriculture and 
Technology in the year 2011; and a Master of Science in Applied 
Statistics from Jomo Kenyatta University of Agriculture and 
Technology in the year 2013.He is currently a Ph.D. student in 
Applied Statistics in Jomo Kenyatta University of Agriculture and 
Technology 

Paper ID: 020131418 1294




