
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Survey Paper on Optimum Selection of GA
Algorithm’s Parameters for Software Test Data

Generation
Sonam Kamboj1, Mohinder Singh2

1M. Tech Scholar, Department of CSE, Maharishi Vedvyas Engineering College, Haryana, India

2Professor CSE, Maharishi Vedvyas Engineering College, Haryana, India

Abstract: This paper empirically evaluates four metaheuristic search techniques namely Genetic Algorithm, artificial bee colony and
Bing Bang Big Crunch Algorithm for automatic test data generation for procedure oriented programs using structural symbolic testing
method. Test data is generated for each feasible path of the programs. All the four algorithms have been evaluated on average
percentage coverage per path.

Keywords: Generic Algorithm, Bing Bang Big Crunch Algorithm, symbolic testing method, average percentage coverage per path

1. Introduction

Although manual generation of test cases is relatively easy
but it is a slow and costly process. Automatic generation of
test cases can save time and testing resources. At the same
time, it is also free from human biases and doesn’t require
special team of testers other than the developers. Despite
having so many benefits, automated test case generation is
not so easy because it requires intelligence of human mind to
identify the nonlinearity and discreteness in test inputs’
search space. For improving the quality of automation and
fulfilling the requirements of test case generation, many
researchers have explored new soft computing based
techniques such as genetic algorithm, simulated annealing,
tabu search, ant colony optimization, particle swarm
optimization, memetic algorithms etc. to fulfill testing
requirement and to generate suitable test cases
automatically.

Two important concern of testing are:
 One is to select an optimum testing criterion also called as

test adequacy criterion or test coverage criterion, which is
feasible, effective and efficient to follow.

 Second is regarding automation of test case generation to
avoid tester’s biases and to reduce the huge cost involved
in software testing.

1.1. 1 Software testing using population based
approaches
Search techniques are applied for generation of test data by
transforming testing objective into search problem. Two
components are essential for a problem which is to be
modeled as search target. First a mechanism should be
derived through which the problem is encoded in search
algorithm and second component is assessment of the
suitability of solutions produced by search technique to
guide the individuals for exploring search space. The
population based metaheuristic search algorithm where
global population represents every possible solutions and
global search space, are frequently applied in applications
where search space is very large. Each member of

population is called an individual or a probable solution
which is evaluated for its fitness so that new and better
individual(s) may be generated.

1. Generate initial population comprising multiple
individuals

2. Evaluate each individual following a criterion specific to
problem

3. Generating next population by using current population
based on their fitness.

4. Go to step 2 until stopping criterion is met
Figure 1: General Algorithm for a population based search

algorithm

1.1.2 Fitness Function Design for symbolic path testing
In path testing approach a candidate solution (also called an
individual) is used to evaluate constraint system of the target
path. This evaluation can be dynamic as well as static. In
dynamic analysis, a program is actually executed with
values of the inputs and then fitness function determines the
extent up to which it has satisfied the testing criterion, which
becomes the fitness of the individual. On the other hand,
static testing does not require the actual execution of
program, but it symbolically executes a testing path as
identified from CFG of program by using symbols instead of
actual values. Symbols are replaced for variables in
predicates or constraints of the entire target path and then
this resultant constraint system is evaluated for fitness.

1.1.3 ABC algorithm

This is biologically inspired technique of swarm intelligence
for searching. It is all about honey bees’ work distribution
and collective foraging strategy to accumulate extra nectar
for their survival in winter season. Seeley investigated the
behavior of bees in distributing their work to optimize the
collection of nectar. Instead of initiating exploration by all
bees, some dedicated explorer bees (scout bees) are
appointed to explore the “profitability” of flower patches in
the surrounding environment. This profitability accounts
various parameters such as amount of nectar in flower
patches, sugar contents in nectar, distance of flower patches

Paper ID: 01061404 46

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

from bee hive etc. If an explorer bee satisfies itself that there
is sufficient profitability then it recruits unloader for
unloading the nectar it has collected during exploration and
dances (known as waggle dance) on dance floor (a
designated place in beehive) to give feedback to foragers
(observer or onlookers bees, which actually collect nectar
from patches) about the quality of the flower patch, which
they have recently searched out.

1.1.4 Fitness Function Design for path testing in symbolic
execution environment
As explained in the previous section, search algorithm for
testing generates population of candidate solutions which
represent the test data taken from the search space modeled
by the inputs’ domains of the SUT. In path testing approach
a candidate solution (also called an individual) is used to
evaluate constraint system of the target path. This evaluation
can be dynamic as well as static. In dynamic analysis, a
program is actually executed with values of the inputs and
then fitness function determines the extent up to which it has
satisfied the testing criterion, which becomes the fitness of
the individual. On the other hand, static testing does not
require the actual execution of program, but it symbolically
executes a testing path as identified from CFG of program
by using symbols instead of actual values. Symbols are
replaced for variables in predicates or constraints of the
entire target path and then this resultant constraint system is
evaluated for fitness.

Violated individual predicate Penalty to be imposed in
case predicate is not satisfied
A < B A – B + ζ
A <= B A – B
A > B B – A + ζ
A >= B B – A
A = B Abs(A – B)
A ≠ B ζ – abs(A – B)

A and B are operands and ζ is a smallest constant of
operands’ universal domains. In case integer it is 1 and in
case real values it can be 0.1 or 0.01 depending on the
accuracy we need in solution.

1.2 GA for software testing

Genetic algorithms (GAs) are optimization technique
initially inspired from the processes of natural selection and
is considered good for searching nonlinear and discrete
search spaces. GA starts with an initial population in which
each individual member (henceforth called individual) is
called chromosome or candidate solution and elements of
each chromosome are called genes. Subsequently, it uses
genetic operators: selection, crossover and mutation on fitter
individuals iteratively in order to generate next population,
which has the high probability of fulfilling test coverage or
adequacy criterion in larger degree as compared to its
parents. Each individual in GA population is analyzed for its
fitness. Being a population based search algorithm, GA’s
success in achieving objectives largely depends on the
meritorious definition of fitness function.

1.3 PSO Algorithm for Software Testing

PSO is a biologically inspired algorithm which applies to
concept of social interaction to problem solving. In PSO a
swarm of “n” individuals or particles (starting population
generated randomly like GA) communicates either directly
or indirectly with one another to generate the next better
search options. Each particle “flies” in the direction of a
better solution weighted by some random factor, sometime
overshooting or another time finding a better or globally
better position. Each particle records and updates its best
fitness and corresponding position in successive iterations.
Global fitness (best fitness among all particles over all
generation) and corresponding position is also remembered.
The interaction between the particles in the swarm helps to
prevent staying off, while keeping close to the optimal
solution. This type of behavior is ideal when exploring large
search spaces.

2. Literature Review

Premal B. Nirpal and K. V. Kale [1] The algorithm takes a
selected path as a target and executes sequences of operators
iteratively for test cases to evolve. The evolved test case can
lead the program execution to achieve the target path. An
automatic path-oriented test data generation is not only a
crucial problem but also a hot issue in the research area of
software testing today.

Jitender kumar chhabra [2] Test cases are symbolically
generated by measuring fitness of individuals with the help
of branch distance based objective function. Evaluation of
the test generator was performed using ten real world
programs. Some of these programs had large ranges for
input variables. Results show that the new technique is a
reasonable alternative for test data generation, but doesn’t
perform very well for large inputs and where constraints are
having many equality constraints.

Parveen kumar [3] Genetic Algorithm and Big Bang Big
Crunch Algorithm for automatic test data generation for
procedure oriented programs using structural symbolic
testing method. Test data is generated for each feasible path
of the programs. Experiments on ten benchmark programs of
varying sizes and complexities are conducted and the
subsequent performance results are presented. All the four
algorithms have been evaluated on average test cases per
path and average percentage coverage per path. It has been
observed that the particle swarm optimization based
algorithm outperforms the other three algorithms. The result
also concludes that predicates solving difficulty (such as
constraints having equality operator‘&&’ as join operator)
has a direct relationship with testing efforts rather than
program complexity measures such as cyclomatic
complexity, number of decision nodes etc.

Shakti kumar [4] Software engineers are facing uphill task
of stabilizing software testing cost with ever increasing
software complexity. Software test data generation is
tedious, most time consuming, complex and central activity
of testing. But this is also the only task in testing where
automation can be deployed. Besides being NP-hard
problem, software testing also requires exact solution

Paper ID: 01061404 47

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

making it more demanding as compared to other
optimization problems. With this background, Researchers
are enthusiastically seeking employment of heuristic
methods towards test data generation. This paper compares
and evaluates two swarm intelligence based search
techniques namely particle swarm optimization and artificial
bee colony algorithm for automatic test data generation for
procedure oriented programs using structural symbolic
testing method. Test data is generated for each feasible path
of the programs. Experiments on ten real world programs of
varying sizes and complexities are conducted and the
subsequent performance results are presented. The results of
these approaches are also compared with genetic algorithm
based technique for test data generation for demonstrating
the efficiency of the swarm intelligence algorithms. The
three algorithms have been evaluated on average test cases
per path and average percentage coverage per path. It has
been observed that the particle swarm optimization based
algorithm outperforms the other two algorithms.

Harmen - Hinrich Sthamer [5] Random testing is used as a
comparison of the effectiveness of test data generation using
GAs which requires up to two orders of magnitude fewer
tests than random testing and achieves 100% branch
coverage. The advantage of GAs is that through the search
and optimization process, test sets are improved such that
they are at or close to the input sub domain boundaries. The
GAs give most improvements over random testing when
these sub domains are small. Mutation analysis is used to
establish the quality of test data generation and the strengths
and weaknesses of the test data generation strategy.

Phil McMinn [6] The use of metaheuristic search
techniques for the automatic generation of test data has been
a burgeoning interest for many researchers in recent years.
Previous attempts to automate the test generation process
have been limited, having been constrained by the size and
complexity of software, and the basic fact that in general,
test data generation is an undecidable problem.
Metaheuristic search techniques o_er much promise in
regard to these problems. Metaheuristic search techniques
are high level frameworks, which utilize heuristics to seek
solutions for combinatorial problems at a reasonable
computational cost. To date, metaheuristic search techniques
have been applied to automate test data generation for
structural and functional testing; the testing of grey-box
properties, for example safety constraints; and also non-
functional properties, such as worst-case execution time.
This paper surveys some of the work undertaken in this
field, discussing possible new future directions of research
for each of its different individual areas.

3. Conclusion

In this survey detail study of test data generation various
testing algorithms have been done. For generation of test
cases, symbolic execution method has been used in which
first, target path is selected from CFG of SUT and then
inputs are generated using search algorithms which can
evaluate composite predicate corresponding to the target
path true.

References

[1] Ahmed MA and Hermadi I, GA-based multiple paths
test data generator. Computers and Operations
Research (2007),(article in press)

[2] Alba E and Chicano F, Software Project Management
with Gas. Information Sciences, 2007; 177(11):2380-
2401

[3] Amoui M, Mirarab S, Ansari A and Lucas C, A
Genetic Algorithm Approach to Design Evolution
using Design Pattern Transformation. International
Journal of Information Technology and Intelligent
Computing 1(2), 2006; 235-244.

[4] Ayari K, Bouktif S and Antoniol G, Automatic
Mutation Test Input Data Generation via Ant Colony.
GECCO’07, July 7–11, 2007, London, England,
United Kingdom.

[5] Beizer B. Software testing techniques. 2nd ed.,
Dreamtech publication New Delhi. 1990.

[6] Burgess CJ and Lefley M, Can Genetic Programming
Improve Software Effort Estimation? A Comparative
Evaluation. Information & Software Technology, 2001;
43(14):863-873

[7] Chong CS, Low MYH, Sivakumar AI and Gay KL, A
Bee Colony Optimization Algorithm to Job Shop
Scheduling. Proceedings of the 37th Winter
Simulation, Monterey, California, 1954-1961, 2006.

[8] Clow B and White T, An evolutionary race: A
comparison of genetic algorithms and particle swarm
optimization for training neural networks. In
Proceedings of the International Conference on
Artificial Intelligence, IC-AI ’04, Volume 2, pages
582–588. CSREA Press, 2004.

[9] Dahiya SS, Chhabra JK and Kumar S, Application of
Particle Swarm Optimization Algorithm to Symbolic
Software Testing. ADCOM 2009, to be held in
Bangalore on 14-17 December 2009. (Communicated
for publication)

[10] Demillo RA, and Offutt AJ, Constraint-based
automatic test data generation. IEEE transaction on
Software engineering. 1991; 17(9): 900-910

[11] DeMillo RA, Lipton RJ and Sayward FG, Hints on
Test Data Selection: Help for the Practicing
Programmer. IEEE Computer, 1978; II(4): 34-41.

[12] Díaz E, Javier T, Raquel B and José JD, A tabu search
algorithm for structural software testing. Computers
and Operations Research (2007),
doi:10.1016/j.cor.2007.01.009

[13] Duran JW and Ntafos AS, Report On Random Testing.
International Conference on Software engineering,
San Diego, California, United States March 09 - 12,
1981

[14] Edvardsson J, A survey on automatic test data
generation. In Proceedings of the second conference
on computer science and engineering, Linkoping:
ESCEL; October 1999; 21–28.

[15] Frankl PG and Weyuker EJ, An Applicable Family of
Data Flow Testing Criteria. IEEE Transaction on
Software Engineering. 1988; 14(10):1483-1498.

[16] Gilb T and Graham D. Software Inspection, Addison-
Wesley 1993

Paper ID: 01061404 48

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[17] Goldberg DE. Genetic algorithms in search,
optimization, and machine learning, Addison-Wesley,
1989.

[18] Harman M and Jones BF, Search-based Software
Engineering. Information & Software Technology,
2001; 43(14):833-839.

[19] Huaizhong LI and LAM Peng C, An Ant Colony
Optimization Approach to Test Sequence Generation
for State based Software Testing. Proceedings of the
Fifth International IEEE Conference on Quality
Software (QSIC’05) 2005.

[20] Jones KO, Comparison of genetic algorithm and
particle swarm optimization. In Proceedings of the
International Conference on Computer Systems and
Technologies, 2005.

[21] Jorgenson P. Software Testing: A Craftman's
Approach, 2nd edition CRC Press, Inc. Boca Raton,
FL, USA, 2001.

[22] Korel B, Automated software test data generation.
IEEE transaction on software engineering, 1990;
16(8):870-879.

[23] Laitenberger O and DeBaud J, An encompassing life
cycle-centric survey of software inspection. Journal of
System Software,. 50 (2000):5–31.

[24] Lin JC and Yeh PL, Automatic test data generation for
path testing using GAs. Information Sciences 2001;
131:47–64.

[25] Mansour N and Salame M, Data generation for path
testing. Software Quality Journal 2004; 12:121–136.

[26] Mantere T and Alander JT, Evolutionary Software
Engineering, A Review, Applied Soft Computing,
2005; 5(3):315-331

[27] Mayer J, Schneckenburger C, An Empirical Analysis
and Comparison of Random Testing Techniques,
ISESE’06,September 21–22, 2006, Rio de Janeiro,
Brazil pp. 105-114.

[28] McMinn P. Search-based Software Test Data
Generation: A Survey. Software Testing, Verification
and Reliability June 2004; 14(2):105-156.

[29] Michael C, McGraw G and Schatz M. Generating
software test data by evolution. IEEE Transactions on
Software Engineering 2001; 27(12):1085–1110.

[30] Miller W and Spooner D. Automatic generation of
floating-point test data. IEEE Transactions on
Software Engineering 1976; 2(3):223-226.

[31] Mitchell BS and Mancoridis S, On the Automatic
Modularization of Software Systems using the Bunch
Tool. IEEE Transactions on Software Engineering,
2006; 32(3):193-208

[32] Myers GJ. The art of software testing. New York:
Wiley; 1979

[33] Nakrani S and Tovey C, On Honey Bees and Dynamic
Allocation in an Internet Server Colony. Proceedings
of 2nd International Workshop on the Mathematics and
Algorithms of Social Insects, Atlanta, Georgia, USA,
2003.

[34] Pargas RP, Harrold MJ and Peck R, Test-data
generation using genetic algorithms. Journal of
Software Testing, Verification and Reliability 1999;
9(4):263–82.

[35] Pedrycz W, Computational Intelligence as an
Emerging Paradigm of Software Engineering.
Proceedings of the 14th International ACM Conference

on Software Engineering and Knowledge Engineering
(SEKE '02), 2002, pp. 7-14

[36] Pham DT, Otri S, Afify A, Mahmuddin M, and Al-
Jabbouli H, Data clustering using the Bees Algorithm.
In 40th CIRP International Seminar on Manufacturing
Systems. 2007: Liverpool.

[37] Pham DT, Otri S, Ghanbarzadeh A, Kog E,
Application of the Bees Algorithm to the Training of
Learning Vector Quantisation Networks for Control
Chart Pattern Recognition. ICTTA'06 Information and
Communication Technologies, 1624-1629, 2006b.

[38] Porter A, Sey A and Votta L, A review of software
inspections. Technical Report: CS-TR-3552,
University of Maryland at College Park College Park,
MD, USA, 1995

[39] Roper M, Computer aided software testing using
genetic algorithms. In 10th International Software
Quality Week, San Francisco, USA, 1997.

[40] Schmickl T, Thenius R and Crailsheim K, Simulating
Swarm Intelligence in Honey Bees: Foraging in
Differently Fluctuating Environments, GECCO'05,
Washington, DC, USA, 273-274,2005.

[41] Seeley TD, The Wisdom of the Hive, Harvard
University Press, Cambridge, MA, 1995.

Paper ID: 01061404 49

