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Abstract: In 1961, Levine [7] introduced weakly continuous functions and in 1987, Noiri [12] introduced and studied weakly  -
continuous functions. Later on Ekici [5], in 2008, introduced and studied BR-continuous and hence weakly BR-continuous functions in 
a similar fashion, by means of b-regular and b-open [4] sets. This prompted us to introduce and study weakly b-continuous by making 
use of b-open sets. We studied several characterizations of weakly b-continuous functions. Some basic properties including restrictions 
and compositions of such functions have also been studied. 
 
Keywords: Weakly continuous functions, weakly �-continuous functions, Weakly BR-continuous functions, Weakly b-continuous and b-
open sets. 
  
1. Introduction 
 
Levine [7] introduced the concept of a weakly continuous 
function. In 2008 Ekici [5] has introduced and studied the 
class of functions namely BR-continuous functions and 
weakly BR-continuous functions by making use of b-regular 
sets. He obtained some characterizations of weakly BR-
continuous functions and established relationships among 
such functions and several other existing functions. In a 
similar manner here our purpose is to introduce and study 
generalizations in form of new classes of functions namely 
weakly b-continuous. The author [6] has already introduced 
and studied b-continuous functions. 
 
Let (X, τ) and (Y, �) (or X and Y) denote topological 
spaces. For a subset A of a space X, the closure A and the 
interior of A are denoted by cl(A) and int(A) respectively. A 
subset A is said to be regular open (resp. regular closed) if 
A=int(cl(A)) (resp. A=cl(int(A)). A subset A is said to be 
preopen [9] (resp. semi open [8], b-open [4], �-open [11], 
semi preopen [3] or �-open [1]) if A⊂int(cl(A)) (resp. 
A⊂cl(int(A)), A⊂int(cl(A))∪cl(int(A)), A⊂int (cl(int(A))), 
A⊂cl(int(cl(A)))). A subset G of X is called b-
neighbourhood of x∈X if there exists a b-open set B 
containing x such that B⊂G. 
 
A point x∈X is said to be a �-cluster point of A [14] if 
A∩cl(U)≠� for every open set U containing x. The set of all 
�-cluster points of A is called �-closure of A and is denoted 
by �-cl(A). A subset A is called �-closed if -cl(A)=A [14]. 
The complement of a �-closed set is called �-open set. The 
complement of a b-open (resp. preopen, semi open, �-open, 
semi preopen) set is called b-closed(resp. preclosed, semi 
closed, �-closed, semi prelosed). The intersection of all b-
closed (resp. preclosed, semi closed, �-closed, semi 
preclosed) sets of X containing A is called b-closure (resp. 
preclosure, semi closure, �-closure, semi preclosure) of A 
and denoted by b-cl(A)(resp. p-cl(A), s-cl(A), �-cl(A), sp-
cl(A)). The union of all b-open (resp. preopen, semi open, �-
open, semi preopen) sets of X contained in A is called b-
interior (resp. preinterior, semi interior, �-interior, semi 
preinterior) of A and denoted by b-int(A) (resp. p-int(A), s-
int(A), �-int(A), sp-int(A)). A subset A is said to be b-
regular [4] if it is b-open as well as b-closed. The family of 
all b-open (resp. b-regular) sets of X is denoted by BO(X) 
(resp. BR(X)). A point x∈X is called b-�-cluster point [13] 

of a subset A of X if b-cl(B)∩A≠� for every b-open set B 
containing x. The set of all b-�-cluster points of A is called 
b-�-closure of A and is denoted by b-�-cl(A). A subset A 
of X is said to be b-�-closed if A=b-�-cl(A). The 
complement of a b-�-closed set is said to be b-�-open. A 
point x∈X is called b-�-interior point of A⊂X if there 
exists a b-regular set U containing x such that U⊂A and is 
denoted by x∈b-�-int(A).  

 
2. Definitions and Characterizations 
 
Definition 2.1:- A function f : X → Y is said to be b-
continuous [6] (resp. strongly �-b-continuous [14]) if for 
each x∈X and each open set V of Y containing f(x), there 
exists a b-open set U containing x such that f(U)⊂V (resp. 
f(b-cl(U))⊂V). 
 
Definition 2.2:- A function f : X → Y is said to be weakly 
continuous [7] (resp. weakly �-continuous [12]) if for each 
x∈X and each open set V of Y containing f(x), there exists 
an open (resp. �-open) set U containing x such that 
f(U)⊂cl(V).  
 
Definition 2.3:- A function f : X → Y is said to be weakly 
b-continuous if for each x∈X and each open set V of Y 
containing f(x), there exists a b-open set U containing x such 
that f(U)⊂cl(V).  
 
Theorem 2.4:- For a function f : X → Y, the following are 
equivalent : 
(a) f is weakly b-continuous at x∈X.  
(b) for each neighbourhood V of f(x), there exists an b-open 
set U containing x (or b-neighbourhood U of x) such that 
f(U)⊂cl(V).  
(c) b-cl(f -1(int(cl(V))))⊂f -1(cl(V)) for every subset V of Y. 
(d) b-cl(f -1(int(F)))⊂f -1(F) for every regular closed subset F 
of Y. 
(e) b-cl(f -1(V))⊂f -1(cl(V)) for every open set V of Y. 
(f) f -1(V)⊂b-int(f -1(cl(V))) for every open set V of Y. 
(g) b-cl(f -1(V))⊂f -1(cl(V)) for each preopen set of Y. 
(h) f -1(V)⊂b-int(f -1(cl(V))) for each preopen set V of Y. 
Proof :- (a)⟺(b) obvious by definition. 
(a)⟹(c) Let V⊂Y and x∈X⎼f -1(cl(V)). Then f(x)∈Y⎼cl(V) 
and there exists an open set U containing f(x), such that 
U∩V=�. We have cl(U)∩int(cl(V))=�. Since f is weakly b-

Paper ID: 24051401 1417



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

continuous, so, there exists a b-open set W containing x such 
that f(W)⊂cl(U). Then W∩f -1(int(cl(V)))=� and x∈X⎼b-cl(f 
-1(int(cl (V)))). Hence b-cl(f -1(int(cl(V))))⊂ f -1(cl(V)). 
(c)⟹(d) Let F be any regular closed set in Y. Then b-cl(f -

1(int(F)))=b-cl (f -1(int(cl(int(F)))))⊂f -1(cl(int(F)))=f -1(F). 
(d)⟹(e) Let V be an open subset of Y. Since cl(V) is 
regular closed in Y, then b-cl (f -1(V))⊂b-cl(int(cl(V)))⊂f -

1(cl(V)). 
(e)⟹(f) Let V be any open set in Y. Since Y⎼cl(V) is open 
in Y, then X⎼b-int (f -1(cl(V)))⊂b-cl(f -1(Y⎼cl(V)))⊂f -

1(cl(Y⎼cl(V)))⊂X⎼f -1(V). Hence f -1(V)⊂ b-int(f -1(cl(V))). 
(f)⟹(a) Let x∈X and V be any open subset of Y containing 
f(x), then x∈ f -1 (V)⊂b-int(f -1(cl(V))). Take W=b-int(f -

1(cl(V)))⊂f -1(cl(V)). Thus f(W)⊂cl (V) and hence f is 
weakly b-continuous at x∈X. 
(a)⟹(g) Let V be any preopen set in Y and x∈X⎼f -1(cl(V)). 
There exists an open set G containing f(x), such that 
G∩V=�. We have, cl(G∩V)=�. Since V is preopen, 
thenV∩cl(G)⊂int(cl(V))∩cl(G)⊂cl(int(cl(V))∩G)⊂cl(int(cl(
V)))∩G ⊂cl(int(cl(V∩G))) ⊂cl(V∩G)=�. Since f is weakly 
b-continuous and G is an open set containing f(x), there 
exists a b-open set W in X containing x such that 
f(W)⊂cl(G). Then f(W)∩V=� and W∩f -1(V)=�. This 
implies that x∈X⎼b-cl(f -1 (V)) and thus b-cl(f -1(V))⊂f -

1(cl(V)). 
(g)⟹(h) Let V be any preopen set. Since Y⎼cl(V) is open in 
Y, then X⎼b-int(f -1 (cl(V)))=b-cl(f -1(Y⎼cl(V)))⊂f -

1(cl(Y⎼cl(V)))⊂X⎼f -1(V). This shows that f -1(V)⊂b-int (f -

1(cl(V))). 
(h)⟹(a) Let x∈X and V be any open set in Y containing 
f(x). We have x∈f -1(V)⊂b-int (f -1(cl(V))). Take W=b-int(f -

1(cl(V))). Then f(W)⊂cl(V) and hence f is weakly b-
continuous at x in X. 
 
Theorem 2.5:- For a function f : X → Y the following are 
equivalent : 
(1) f is weakly b-continuous at x∈X. 
(2) x∈b-int(f -1(cl(U))) for each neighbourhood U of f(x). 
Proof:- (1)⟹(2) Let U be any neighbourhood of f(x). Then 
there exists a  
b-open G containing x such that f(G)⊂cl(U). Since G⊂f -

1(cl(U)) and G is b-open then x∈G⊂b-int G⊂b-int(f -

1(cl(U))).  
(2)⟹(1) Let x∈b-int(f -1(cl(U))) for each neighbourhood U 
of f(x). Then V=b-int (f -1(cl(U))). This implies that 
f(V)⊂cl(U) and V is b-open. Hence f is weakly b-continuous 
at x∈X. 
 
Theorem 2.6:- If f : X→Y is a weakly b-continuous 
function and Y is Hausdorff, then f has b-closed point 
inverses.  
Proof:- Let y∈Y and x∈X such that f(x)≠y. Since Y is 
Hausdorff, there exist disjoint open sets G and H such that 
f(x)∈G and y∈H. Also, G∩H=�, implies cl(G)∩H=�. We 
have y∉cl(G). Since f is weakly b-continuous, so, there 
exists a b-open set U containing x such that f(U)⊂cl(G). 
Assume that U is not contained in {x∈X : f(x)=y}. If 
possible for some u∈U, f(u)=y, then y= f(u) ∈cl(G). This 
contradicts cl(G)∩H=�. Hence U⊂{x∈X : f(x)≠y} and U is 
b-open in X. Thus, set {x∈X : f(x)≠y} is b-open in X, 
equivalently, f -1{(y)}= {x∈X : f(x)=y} is b-closed in X. 
 

Theorem 2.7:- For a function f : X → Y, the following are 
equivalent : 
(a)f is weakly b-continuous.  
(b) f(b-cl(G))⊂�-cl(f(G)) for each subset G of X. 
(c) b-cl(f -1(H))⊂f -1(�-cl(H)) for each subset H of Y. 
(d) b-cl(f -1(int(�-cl(H))))⊂f -1(�-cl(H)) for every subset H 
of Y. 
Proof:- (a)⟹(b) Let G⊂X, x∈b-cl(G) and U be any open 
set in Y containing f(x). There exists a b-open W containing 
x such that f(W)⊂cl(U). Since, x∈b-cl(G), then W∩G=�. 
This implies that �≠f(W)∩f(G)⊂cl(U)∩f(G) and f(x)∈�-
cl(f(G)). Thus, f(b-cl(G))⊂�-cl(f(G)). 
(b)⟹(c) Let H⊂Y. Then f(b-cl(f -1(H)))⊂�-cl(H) and hence 
b-cl(f -1(H))⊂f -1(�-cl(H)). 
(c)⟹(d) Let H⊂Y. Since �-cl(H) is closed in Y, then b-cl(f 
-1(int(�-cl(H))))⊂f -1(�-cl(int(�-cl(H))))=f -1(cl(int(�-
cl(H))))⊂f -1(�-cl(H)). 
(d)⟹(a) Let H be any open set of Y. We have 
H⊂int(cl(H))=int(�-cl(H)).  
Thus, b-cl(f -1(H))⊂b-cl(f -1(int(�-cl(H))))⊂f -1(�-cl(H))⊂f -

1(cl(H)). This implies from Theorem 2.4(e) that f is weakly 
b-continuous.  
 
Theorem 2.8:- If f -1(�-cl(V)) is b-closed in X for every 
subset V of Y, then f is weakly b-continuous.  
Proof:- Let V⊂Y. Since f -1(�-cl(V)) is b-closed in X, then 
b-cl(f -1(V))⊂b-cl(f -1(�-cl(V)))=f -1(�-cl(V)). This implies 
from above Theorem 2.7 that f is weakly b-continuous. 
Theorem 2.9:- If f : X → Y is a function which is weakly b-
continuous, then f -1(V) is b-closed in X for every �-closed 
subset V of Y.  
Proof:- Follows directly from Theorem 2.7. Since f is 
weakly b-continuous, so, b-cl (f -1(V))⊂f -1(�-cl(V))=f-1(V) 
for a �-closed set V in Y. This implies that b-cl(f -1(V))= f -

1(V). Thus, f -1(V) is b-closed if V is �-closed. 
Corollary 2.10:- Let f : X → Y be a weakly b-continuous 
function, then f -1(V) is b-open in X for every �-open subset 
V of Y. 
 
Theorem 2.11:- Let f : X → Y be a function. If Y is regular 
then following are equivalent : 
(a) f is weakly b-continuous. 
(b) f is b-continuous. 
(c) f is strongly �-b-continuous if and only if f is continuous 
[13]. 
Proof:- Let x∈X and V be an open set of Y containing f(x). 
Since Y is regular,  
then there exists an open set H of Y containing f(x) such that 
H⊂cl(H)⊂V. Since f is weakly b-continuous, there exists a 
b-open set U of X containing x such that f(U)⊂cl(H)⊂V. 
Thus f is b-continuous. Converse is obvious. 
Lemma 2.12 [4]:-The intersection of an �-open set and a b-
open set is a b-open set. 
Lemma 2.13 [10]:- If A is �-open in X, then 
BO(A)=BO(X)∩A. 
Lemma 2.14 [2]:- If A⊂B⊂X, B∈BO(X) and A∈BO(B), 
then A∈BO(X). 
 
Theorem 2.15:- Let { A i : i∈I} be an �-open cover of a 
space X and f : X → Y be  
a function, then following are equivalent : 
(a) f is weakly b-continuous.  
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(b) the restriction f/A i : A i → Y is weakly b-continuous for 
each i∈I. 
Proof:- (a)⟹(b) Let i∈I and Ai be an �-open set in X. Let 
x∈Ai and V be an open set in Y containing f/Ai(x)=f(x). 
Since f is weakly b-continuous, so, there exists a b-open set 
G containing x such that f(G)⊂cl(V). Moreover G∩Ai is b-
open in Ai containing x and f/Ai 
(G∩Ai)=f(G∩Ai)⊂f(G)⊂cl(V). Hence f/Ai is weakly b-
continuous.  
 
(b)⟹(a) Let x∈X and V be an open set in Y containing f(x). 
There exists i∈I, such that x∈Ai. Since f/Ai : Ai → Y is 
weakly b-continuous, there exists a b-open set G in Ai 
containing x such that f/Ai(G)⊂cl(V). Since each Ai is �-
open in X then G is b-open in X containing x and 
f(G)⊂cl(V). Hence f is weakly b-continuous. 
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