Weakly b-Continuous Functions

Arvind Kumar¹, Vinshu², Bhopal Singh Sharma³

Abstract: In 1961, Levine [7] introduced weakly continuous functions and in 1987, Noiri [12] introduced and studied weakly continuous functions. Later on Ekici [5], in 2008, introduced and studied BR-continuous and hence weakly BR-continuous functions in a similar fashion, by means of b-regular and b-open [4] sets. This prompted us to introduce and study weakly b-continuous by making use of b-open sets. We studied several characterizations of weakly b-continuous functions. Some basic properties including restrictions and compositions of such functions have also been studied.

Keywords: Weakly continuous functions, weakly α -continuous functions, Weakly BR-continuous functions, Weakly b-continuous and bopen sets.

1. Introduction

Levine [7] introduced the concept of a weakly continuous function. In 2008 Ekici [5] has introduced and studied the class of functions namely BR-continuous functions and weakly BR-continuous functions by making use of b-regular sets. He obtained some characterizations of weakly BRcontinuous functions and established relationships among such functions and several other existing functions. In a similar manner here our purpose is to introduce and study generalizations in form of new classes of functions namely weakly b-continuous. The author [6] has already introduced and studied b-continuous functions.

Let (X, τ) and (Y, σ) (or X and Y) denote topological spaces. For a subset A of a space X, the closure A and the interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be **regular open** (resp. **regular closed**) if A=int(cl(A)) (resp. A=cl(int(A)). A subset A is said to be **preopen [9]** (resp. **semi open [8], b-open [4], \alpha-open [11], semi preopen [3] or \beta-open [1]) if A⊂int(cl(A)) (resp. A⊂cl(int(A)), A⊂int(cl(A))∪cl(int(A)), A⊂int (cl(int(A))), A⊂cl(int(cl(A)))). A subset G of X is called bneighbourhood of x∈X if there exists a b-open set B containing x such that B⊂G.**

A point $x \in X$ is said to be a θ -cluster point of A [14] if $A \cap cl(U) \neq \phi$ for every open set U containing x. The set of all θ -cluster points of A is called θ -closure of A and is denoted by θ -cl(A). A subset A is called θ -closed if -cl(A)=A [14]. The complement of a θ -closed set is called θ -open set. The complement of a b-open (resp. preopen, semi open, α -open, semi preopen) set is called b-closed(resp. preclosed, semi closed, α -closed, semi prelosed). The intersection of all bclosed (resp. preclosed, semi closed, α -closed, semi preclosed) sets of X containing A is called **b-closure** (resp. preclosure, semi closure, α -closure, semi preclosure) of A and denoted by b-cl(A)(resp. p-cl(A), s-cl(A), α -cl(A), spcl(A)). The union of all b-open (resp. preopen, semi open, α open, semi preopen) sets of X contained in A is called binterior (resp. preinterior, semi interior, α -interior, semi **preinterior**) of A and denoted by b-int(A) (resp. p-int(A), sint(A), α -int(A), sp-int(A)). A subset A is said to be **b**regular [4] if it is b-open as well as b-closed. The family of all b-open (resp. b-regular) sets of X is denoted by BO(X)(resp. BR(X)). A point $x \in X$ is called **b-\theta-cluster point** [13]

of a subset A of X if $b-cl(B) \cap A \neq \phi$ for every b-open set B containing x. The set of all $b-\theta$ -cluster points of A is called **b-\theta-closure** of A and is denoted by **b-\theta-cl(A)**. A subset A of X is said to be **b-\theta-closed** if $A=b-\theta$ -cl(A). The complement of a b- θ -closed set is said to be **b-\theta-open**. A point x \in X is called **b-\theta-interior** point of A \subset X if there exists a b-regular set U containing x such that U \subset A and is denoted by $x \in b-\theta$ -int(A).

2. Definitions and Characterizations

Definition 2.1:- A function $f : X \to Y$ is said to be **b**continuous [6] (resp. strongly θ -b-continuous [14]) if for each x \in X and each open set V of Y containing f(x), there exists a b-open set U containing x such that $f(U) \subset V$ (resp. $f(b\text{-cl}(U)) \subset V$).

Definition 2.2:- A function $f : X \to Y$ is said to be weakly continuous [7] (resp. weakly α -continuous [12]) if for each $x \in X$ and each open set V of Y containing f(x), there exists an open (resp. α -open) set U containing x such that $f(U) \subset cl(V)$.

Definition 2.3:- A function $f : X \to Y$ is said to be **weakly b-continuous** if for each $x \in X$ and each open set V of Y containing f(x), there exists a b-open set U containing x such that $f(U) \subset cl(V)$.

Theorem 2.4:- For a function $f : X \rightarrow Y$, the following are equivalent :

(a) f is weakly b-continuous at $x \in X$.

(b) for each neighbourhood V of f(x), there exists an b-open set U containing x (or b-neighbourhood U of x) such that $f(U) \subset cl(V)$.

(c) b-cl(f⁻¹(int(cl(V))))⊂f⁻¹(cl(V)) for every subset V of Y.
(d) b-cl(f⁻¹(int(F)))⊂f⁻¹(F) for every regular closed subset F of Y.

(e) $b-cl(f^{-1}(V)) \subset f^{-1}(cl(V))$ for every open set V of Y.

(f) $f^{-1}(V) \subset b$ -int($f^{-1}(cl(V))$) for every open set V of Y.

(g) b-cl($f^{-1}(V)$) $\subset f^{-1}(cl(V))$ for each preopen set of Y.

(h) $f^{-1}(V) \subset b^{-int}(f^{-1}(cl(V)))$ for each proopen set V of Y.

Proof :- (a) \Leftrightarrow (b) obvious by definition.

(a)⇒(c) Let V⊂Y and x∈X-f⁻¹(cl(V)). Then f(x)∈Y-cl(V)and there exists an open set U containing f(x), such that U∩V= ϕ . We have cl(U)∩int(cl(V))= ϕ . Since f is weakly bcontinuous, so, there exists a b-open set W containing x such that $f(W) \subset cl(U)$. Then $W \cap f^{-1}(int(cl(V))) = \phi$ and $x \in X$ -b-cl(f⁻¹(int(cl(V)))). Hence b-cl(f⁻¹(int(cl(V)))) \subset f^{-1}(cl(V)).

(c)⇒(d) Let F be any regular closed set in Y. Then b-cl(f⁻¹(int(F)))=b-cl (f⁻¹(int(cl(int(F))))⊂f⁻¹(cl(int(F)))=f⁻¹(F). (d)⇒(e) Let V be an open subset of Y. Since cl(V) is regular closed in Y, then b-cl (f⁻¹(V))⊂b-cl(int(cl(V)))⊂f⁻¹

 $^{1}(cl(V)).$

(e)⇒(f) Let V be any open set in Y. Since Y-cl(V) is open in Y, then X-b-int (f $^{-1}(cl(V)))$ ⊂b-cl(f $^{-1}(Y-cl(V)))$ ⊂f $^{-1}(cl(Y-cl(V)))$ ⊂X-f $^{-1}(V)$. Hence f $^{-1}(V)$ ⊂ b-int(f $^{-1}(cl(V)))$.

(f)⇒(a) Let x∈X and V be any open subset of Y containing f(x), then x∈ f⁻¹ (V)⊂b-int(f⁻¹(cl(V))). Take W=b-int(f⁻¹(cl(V)))⊂f⁻¹(cl(V)). Thus f(W)⊂cl (V) and hence f is weakly b-continuous at x∈X.

(a)⇒(g) Let V be any preopen set in Y and x∈X-f⁻¹(cl(V)). There exists an open set G containing f(x), such that $G\cap V=\phi$. We have, $cl(G\cap V)=\phi$. Since V is preopen, then V∩cl(G)⊂int(cl(V))∩cl(G)⊂cl(int(cl(V))∩G)⊂cl(int(cl(V)))∩G ⊂cl(int(cl(V∩G))) ⊂cl(V∩G)=\phi. Since f is weakly b-continuous and G is an open set containing f(x), there exists a b-open set W in X containing x such that f(W)⊂cl(G). Then f(W)∩V= ϕ and W∩f⁻¹(V)= ϕ . This implies that x∈X-b-cl(f⁻¹(V)) and thus b-cl(f⁻¹(V))⊂f⁻¹(cl(V)).

(g)⇒(h) Let V be any preopen set. Since Y-cl(V) is open in Y, then X-b-int(f⁻¹ (cl(V)))=b-cl(f⁻¹(Y-cl(V)))⊂f⁻¹(cl(Y-cl(V)))⊂X-f⁻¹(V). This shows that f⁻¹(V)⊂b-int (f⁻¹(cl(V))).

(h)⇒(a) Let x∈X and V be any open set in Y containing f(x). We have x∈f⁻¹(V)⊂b-int (f⁻¹(cl(V))). Take W=b-int(f⁻¹(cl(V))). Then f(W)⊂cl(V) and hence f is weakly b-continuous at x in X.

Theorem 2.5:- For a function $f : X \to Y$ the following are equivalent :

(1) f is weakly b-continuous at $x \in X$.

(2) $x \in b$ -int($f^{-1}(cl(U))$) for each neighbourhood U of f(x).

Proof:- (1) \Rightarrow (2) Let U be any neighbourhood of f(x). Then there exists a

b-open G containing x such that $f(G) \subset cl(U)$. Since $G \subset f^{-1}(cl(U))$ and G is b-open then $x \in G \subset b$ -int $G \subset b$ -int($f^{-1}(cl(U))$).

(2) \Rightarrow (1) Let x \in b-int(f⁻¹(cl(U))) for each neighbourhood U of f(x). Then V=b-int (f⁻¹(cl(U))). This implies that f(V) \subset cl(U) and V is b-open. Hence f is weakly b-continuous at x \in X.

Theorem 2.6: If $f : X \rightarrow Y$ is a weakly b-continuous function and Y is Hausdorff, then f has b-closed point inverses.

Proof:- Let $y \in Y$ and $x \in X$ such that $f(x) \neq y$. Since Y is Hausdorff, there exist disjoint open sets G and H such that $f(x)\in G$ and $y\in H$. Also, $G\cap H=\phi$, implies $cl(G)\cap H=\phi$. We have $y\notin cl(G)$. Since f is weakly b-continuous, so, there exists a b-open set U containing x such that $f(U)\subset cl(G)$. Assume that U is not contained in $\{x\in X : f(x)=y\}$. If possible for some $u\in U$, f(u)=y, then $y=f(u)\in cl(G)$. This contradicts $cl(G)\cap H=\phi$. Hence $U\subset \{x\in X : f(x)\neq y\}$ and U is b-open in X. Thus, set $\{x\in X : f(x)\neq y\}$ is b-open in X, equivalently, $f^{-1}\{(y)\}=\{x\in X : f(x)=y\}$ is b-closed in X. **Theorem 2.7:-** For a function $f : X \rightarrow Y$, the following are equivalent :

(a)f is weakly b-continuous.

(b) $f(b-cl(G)) \subset \theta$ -cl(f(G)) for each subset G of X.

(c) $b-cl(f^{-1}(H)) \subset f^{-1}(\theta-cl(H))$ for each subset H of Y.

(d) $b-cl(f^{-1}(int(\theta-cl(H)))) \subset f^{-1}(\theta-cl(H))$ for every subset H of Y.

Proof: (a) \Rightarrow (b) Let G \subset X, x \in b-cl(G) and U be any open set in Y containing f(x). There exists a b-open W containing x such that f(W) \subset cl(U). Since, x \in b-cl(G), then W \cap G= ϕ . This implies that $\phi \neq f(W) \cap f(G) \subset$ cl(U) $\cap f(G)$ and f(x) $\in \theta$ -cl(f(G)). Thus, f(b-cl(G)) $\subset \theta$ -cl(f(G)).

(b)⇒(c) Let H⊂Y. Then $f(b-cl(f^{-1}(H))) ⊂ \theta-cl(H)$ and hence $b-cl(f^{-1}(H)) ⊂ f^{-1}(\theta-cl(H))$.

(c)⇒(d) Let H⊂Y. Since θ -cl(H) is closed in Y, then b-cl(f ⁻¹(int(θ -cl(H))))⊂f ⁻¹(θ -cl(int(θ -cl(H))))=f ⁻¹(cl(int(θ cl(H))))⊂f ⁻¹(θ -cl(H)).

(d)⇒(a) Let H be any open set of Y. We have $H⊂int(cl(H))=int(\theta-cl(H)).$

Thus, $b-cl(f^{-1}(H)) \subset b-cl(f^{-1}(int(\theta-cl(H)))) \subset f^{-1}(\theta-cl(H)) \subset f^{-1}(cl(H))$. This implies from Theorem 2.4(e) that f is weakly b-continuous.

Theorem 2.8:- If $f^{-1}(\theta - cl(V))$ is b-closed in X for every subset V of Y, then f is weakly b-continuous.

Proof: Let $V \subset Y$. Since $f^{-1}(\theta - cl(V))$ is b-closed in X, then b-cl($f^{-1}(V)$) \subset b-cl($f^{-1}(\theta - cl(V))$)= $f^{-1}(\theta - cl(V))$. This implies from above Theorem 2.7 that f is weakly b-continuous.

Theorem 2.9:- If $f: X \to Y$ is a function which is weakly bcontinuous, then $f^{-1}(V)$ is b-closed in X for every θ -closed subset V of Y.

Proof:- Follows directly from Theorem 2.7. Since f is weakly b-continuous, so, b-cl $(f^{-1}(V)) \subset f^{-1}(\theta - cl(V)) = f^{-1}(V)$ for a θ -closed set V in Y. This implies that b-cl $(f^{-1}(V)) = f^{-1}(V)$. Thus, $f^{-1}(V)$ is b-closed if V is θ -closed.

Corollary 2.10:- Let $f : X \to Y$ be a weakly b-continuous function, then $f^{-1}(V)$ is b-open in X for every θ -open subset V of Y.

Theorem 2.11:- Let $f : X \to Y$ be a function. If Y is regular then following are equivalent :

(a) f is weakly b-continuous.

(b) f is b-continuous.

(c) f is strongly θ -b-continuous if and only if f is continuous [13].

Proof:- Let $x \in X$ and V be an open set of Y containing f(x). Since Y is regular,

then there exists an open set H of Y containing f(x) such that $H \subset cl(H) \subset V$. Since f is weakly b-continuous, there exists a b-open set U of X containing x such that $f(U) \subset cl(H) \subset V$. Thus f is b-continuous. Converse is obvious.

Lemma 2.12 [4]:-The intersection of an α -open set and a b-open set is a b-open set.

Lemma 2.13 [10]:- If A is α -open in X, then BO(A)=BO(X) \cap A.

Lemma 2.14 [2]:- If $A \subset B \subset X$, $B \in BO(X)$ and $A \in BO(B)$, then $A \in BO(X)$.

Theorem 2.15:- Let { A $_i$: $i \in I$ } be an α -open cover of a space X and f : X \rightarrow Y be

a function, then following are equivalent :

(a) f is weakly b-continuous.

(b) the restriction $f/A i : A i \rightarrow Y$ is weakly b-continuous for each $i \in I$.

Proof: (a)=>(b) Let $i\in I$ and A_i be an α -open set in X. Let $x\in A_i$ and V be an open set in Y containing $f/A_i(x)=f(x)$. Since f is weakly b-continuous, so, there exists a b-open set G containing x such that $f(G)\subset cl(V)$. Moreover $G\cap A_i$ is b-open in A_i containing x and f/A_i $(G\cap A_i)=f(G\cap A_i)\subset f(G)\subset cl(V)$. Hence f/A_i is weakly b-continuous.

(b) \Rightarrow (a) Let x \in X and V be an open set in Y containing f(x). There exists i \in I, such that x \in A_i. Since f/A_i : A_i \rightarrow Y is weakly b-continuous, there exists a b-open set G in A_i containing x such that f/A_i(G) \subset cl(V). Since each A_i is α open in X then G is b-open in X containing x and f(G) \subset cl(V). Hence f is weakly b-continuous.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, "β-open sets and β-continuous mappings", Bull. Fac. Sci. Assiut Univ. 12(1983), 77-90.
- [2] M. E. Abd El- Monsef and A. A. Nasef, "On multifunctions", Chaos Solitons and Fractals 12(2001), 2387-2394.
- [3] D. Andrijevic, "Semipreopen sets", Mat. Vesnik, 38(1986), 24-32.
- [4] D. Andrijevic, "On b-open sets ", Mat. Vesnik, 48(1996), 59-64.
- [5] E. Ekici, "Generalization of weakly clopen and strongly θ-b-continuous functions", Chaos Solitons and Fractals 38(2008), 79-88.
- [6] A. A. El-Atik, "A study of some types of mappings on topological spaces", M.Sc. Thesis Tanta University (Egypt, 1997).
- [7] N. Levine, "A decomposition of continuity in topological spaces", Amer. Math. Monthly 68(1961), 44-46.
- [8] N. Levine, "Semiopen sets and semicontinuity in topological spaces", Amer. Math. Monthly. 70(1963), 36-41.
- [9] A. S. Mashhour, M. E. Abd. El-Monsef, S. N. El-Deeb. ,"On precontinuous
- [10] *and weak precontinuous mappings*", Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- [11] A. A. Nasef, "On b-locally closed sets and related topics", Chaos Solitons and Fractals 12(2001), 1909-1915.
- [12] O. Njastad, "On some classes of nearly open sets", Pacific J. Math. 15(1965), 961-970.
- [13] T. Noiri, "Weakly a-continuous functions", Int. J. Math. Math. Sci. 10(3) (1987), 483-490.
- [14] J. H. Park, "Strongly θ-b-continuous functions", Acta Math. Hungar 110(4)(2006), 347-359.
- [15] N. V. Velicko, "*H-closed topological spaces*", Amer. Math. Soc. Transl. 78(1968), 103-118.

Authors Profile

Arvind Kumar is a Research scholar in Department of Mathematics at University of Delhi, Delhi-110007, India

Vinshu is Research scholar (Mathematics), N.R.E.C. College, KHURJA, CCS University, Meerut, India

Dr. Bhopal Singh Sharma is woring as Associate Professor in department of Mathematics, N.R.E.C. College, KHURJA. CCS University, Meerut, India