
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Using Peer to Peer Approach of Distributed Systems 
to Design a Chat Room Application 

 
Kennevor D.G. Kharsyntiew 

 
Department of Computer Science & Engineering, Saveetha School of Engineering, Shillong, India 

 
 
Abstract: A distributed system is an application that executes a collection of protocols to coordinate the actions of multiple processes 
on a network, such that all components cooperate together to perform a set of related tasks. A distributed system can be physically 
instructed by two ways: First, fully connected network peer- to –peer approach in which each of the nodes is connected to each other. 
Second, partially connected network in which a direct links exist between some but not all pairs of computers. The purpose of this paper 
is to design a chat room application which is based on the architecture of distributed system. This paper used a peer-to-peer approach to 
design the chat room application. 
 
1. Introduction 
 
A chat application can be designed using different 
approaches of distributed system architecture. We will 
explain in details a peer-to-peer approach. Even though 
different models are possible there remains some 
functionality in common as shown in Fig.1.1. 
 

 
Figure 1.1: Architectural styles 

 
In the above Fig. 1.1, Part A remains the same in all 
architectural styles which consist of GUI, text and display 
manager and status manager. Part B must be different in 
case of a peer-to-peer. In this paper section 3 represents the 
design scheme of architecture, section 4 develop a chat 
application use of a peer-to-peer architecture and how it 
work. 

 
2. Objectives 
 
This paper designs a chat room by using the architecture of 
distributed system which fulfils the following objectives: 
 
(a) Design a Network scheme for peer-to-peer architecture.  
(b) Use the peer-to- peer architecture of distributed system to 
design a chat room with following concepts:  
 

• How does it work?  
• Login and who is on-line?  
• Ask for friend relation  
• Chatting  

 
3. Design Scheme 
 
To design a chat room based on the peer- to– peer 
architecture of distributed system we will use the following 

managers as shown in Fig.2: 
 
(a) Network manager. A network manager is responsible 
for listening to the network.  
(b) Packets manager. The packet manager is responsible for 

classifying packets between system and normal chat 
messages. 

(c) Text and display manager. The text and display manager 
is responsible for normal chat messages received from 
the packet manager. 

(d) Status manager. This is responsible for status, login and 
friend messages. 
 

 
Figure 2: Networks Managers 

 
The most important thing is to run all these modules in 
separate threads because it is really important to deal with 
and display messages when the network manager is sending 
another one, etc. Fig. 3(b) showed the global shape of the 
architecture: peer-to-peer architecture. 
 

 
Figure 3 (b): Peer-to-Peer Architecture 

 
We would try to explain more how the architecture can be 
developed and how we can deal with some aspects of the 
process such as login, discovery, friend relationships etc in 

Paper ID: 21051405 1459



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

the next section of this paper. 
 
(a) Peer-To- Peer Architecture 
The first possibility to develop a chat application is the use 
of a peer-to-peer architecture of distributed system. A fully 
connected network peer to peer architecture is a network in 
which each of the nodes is connected to each other as shown 
in Fig. 1.3.  

 
Figure 1.3: Node connection 

 
The friends-list is modified when we add or remove a friend. 
This process will be explained in more details in our next 
section. The online-list is managed by the status manager. In 
a first time, we add peers into this list during the login 
phase. But, after that, we can use an eventually perfect 
failure detector (EPFD) to remove peers when they leave or 
they crash. 
 
(b) Login and who is on-line? 
We take an example with five peers (nodes) already 
connected on the network we are the sixth one arriving on 
the network as shown in Fig.1.5 and let's make some 
assumptions 

 
Figure 1.5: Example sixth one (node) arriving on the 

network 
 

 (a) How does it work? 
We are working with a pure peer-to-peer network which is 
composed by peers and links between them only. We do not 
want to use the functionalities of super-peers to keep this 
system as basic and simple as possible. Every node must 
maintain two separated lists. 
(i) One list containing names of friends (List<Friend1, 
Friend2, Friend3, ...,>). 
(ii Another list containing all online peers that we know 
(List<[User1, IP, Port], [User2, IP, Port], [User3, IP, Port], 
...>). 
 
We assume that the discovery process is made easier thanks 
to a public place where connected peers can publish their 
point-of-entrance in the network. Whatever happens we 
need to know at least one entry point. We assume that there 
exists a (well managed) DHT (Distributed Hash Table) 
containing all credentials of registered people of this chat 
service. 
 
Peer 6 chooses Peer 5 as entry point. Peer 6 will send a join 
message to Peer 5: JOIN(Peer6, Password, IP, Port) 
Figure 6 shows the behaviour of every node when a JOIN 
message arrives[6]. 

 

 
Figure 6: Behaviour model 

Paper ID: 21051405 1460



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

In addition to that, we can imagine a way to avoid Join 
messages to loop forever in the network with a simple 'id' 
feature or something. Thanks to this login process, we can 
retrieve the list of already connected people and launch our 
EPFD on every host to detect when they leave or they crash. 
We are now ready to begin chat sessions with connected 
friends. 
 
(c) Ask for friend relation 
When the application that is running and the user is fully 
logged-in, we can simply search in the online list to friend 
new friends. Then, we can directly send an Ask-Friend 
message to the IP address and the port of the new friend. 
This kind of message is treated by the packets manager. If 
the new friend agrees with this new relationship, he replies 
with a Friend- Ok message to the original peer. If the new 
friend not wants to begin a relationship with the peer, he 
simply never replies to the message. This process is very 
simple thanks to the fact that we are in a peer-to-peer 
network, where every node can act as a server, client or 
both. The communication between peers can be done 
directly thanks to the information contained in the online-
list. 
 
(d) Chatting 
In the same way than the friend messages, peers can simply 
exchange normal chat messages with each other thanks to 
the fact that they have all the information to join other peers. 
We can easily understand here the importance of the packets 
manager. Actually, when a packet arrives in a node, the 
packet manager can simply read the header of this packet to 
know if it is a system notification (friends, status, etc.) or a 
real chat message (containing text to display). 
 
4. Conclusion 
 
The peer-to-peer is not the best one for the login 
performance. We have to wait until our Join message 
reaches the farthest node to be fully connected to the 
network. If we have a global network with a high latency 
and a shortest path from us to the farthest node of about 50 
hops, we must wait 50 times the mean latency of the 
network to be sure that everybody on the network is aware 
of our presence.  
 
References 
 
[1] Yang, B. H. & Garcia-Moline, “Designing a Super-Peer 

Network”, Standford University, February 2002.  
[2] Kwok, S., Lui, S., A License Management Model for 

Peer-to-Peer Music Sharing. International Journal of 
Information Technology & Decision Making, September, 
vol. 1, #3, pp. 541-558,2002.  

[3] Lang, K. and Vragov, R. “Using Experimental Methods 
to Evaluate the Effectiveness of Different Pricing 
Mechanisms for Content Distribution Over Peer-to-Peer 
Networks.” Americas Conference on Information 
Systems. 2005.  

[4] Lechner, U. and Hummel, J. “Business Models and 
System Architectures of Virtual Communities: From a 
Sociological Phenomenon to Peer-to-Peer 
Architectures”, International Journal of Electronic 
Commerce, 6, 3,2002. pp.41-53.  

[5] E. Bonsma, C. Hoile. “A distributed implementation of 
the SWAN peer-to-peer look-up system using mobile 
agents”. In Proc. of the AAMAS’02 Workshop on 
Agents and Peer-to-Peer Computing, Italy, 2002.  

[6] Bibliography    containing references    on  
www.wikipedia.com 

[7] Bibliography containing references on Distributed 
Computing can be found at: ftp:ftp.cs. umanitoba.ca/ 
pub/ bibliographies/ Distributed/ Oss er.html 

Paper ID: 21051405 1461




