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Abstract. In this paper we will discuss some more results of comultiplication modules.

1. Introduction

Throughout of this paper, R denotes the
commutative ring with unity.

The concept of comultiplication modules
was first introduced by H. Ansari-Toroghy
and F. Farshadifar [3] in 2007. An R-
module M is called comultiplication module
if for every submodule N of M , there exists
an ideal I of R such that N = annM(I).
An R-module M is comultiplication mod-
ule if and only if for any submodule N of M ,
N = (0 :M annR(N))[3]. Also, every proper
submodule of a comultiplication module is
comultiplication module[3]. However, con-
verse may not be true. For example, if V is
a two dimensional vector space over a field k
then V cannot be comultiplication module
but every proper subspace of V is comul-
tiplication as every one dimensional vector
space is comultiplication module. If R is lo-
cal ring then every comultiplication module
is cocyclic. Also a finitely generated second
submodule of a comultiplication module is
multiplication module [6]. It was also shown
that every non zero comultiplication module
contains a minimal submodule[6].

In 2009, Reza Ebrahimi Atani and Sha-
habaddin Ebrahimi Atani [14] described
the indecomposable comultiplication mod-
ules and non-separated indecomposable co-
multiplication module over pullback of local
Dedekind domains.

In 2011, Yousef Al-Shaniafi and Patrick
F. Smith [9] studied the localization of co-
multiplication modules over a general ring
R. If every maximal ideal m of R is good
for M then M is comultiplication R-module
if and only if Mm is a comultiplication Rm-
module for every maximal ideal m of R [9].
Every comultiplication module have unique
complements [10]. Also every comultiplica-
tion module have unique Goldie dimensions
[10].

2. Main results

We begin with the definition of Multipli-
cation and Comultiplication modules.

Definition 2.1. An R-module M is called
multiplication module if for every submod-
ule N of M , there exists an ideal I of R such
that N = IM [9] .

Definition 2.2. An R-module M is called
comultiplication module if for any submod-
ule N of M , there exists an ideal I of R such
that N = annM(I) [9] .

Definition 2.3. An R-module M is a self-
cogenerator if for every submodule N of M ,
the factor module M/N embeds in direct
product M I of copies of M , for some index
set I, that is, there exists a one-one map
φ : M/N →M I [9].

Proposition 2.4. M is a self-cogenerator
if and only if for every submodule N of M ,
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there exists an index set I and an endomor-
phisms φi for all i ∈ I on M such that
N = ∩

i∈I
kerφi.

Proof. Let M be a self-cogenerated module
and let N be any submodule of M . Then
by definition, there exists a one-one map φ :
M/N →M I for some index set I. Consider

the map φi : M
π−→ M/N

φ−→ M I πi−→ M ,
that is φi = πiφπ : M → M . Note that
x ∈ ∩i∈Ikerφi if and only if πiφπ(x) = 0 for
all i, that is, πiφ(x + N) = (0) for all i, if
and only if φ(x + N) = (0), that is, x ∈ N .
Therefore,

∩i∈Ikerφi = N.

Conversely, suppose that for every sub-
module N of M , there exists endomor-
phisms φi : M → M , i ∈ I, for some index
set I, such that

∩i∈Ikerφi = N.

Define φ : M → M I as φ(x) = (φi(x))i∈I .
Obviously,

ker(φ) = ∩i∈Iker(φi) = N.

Therefore, φ induces a one-one map φ′

from M/N to M I and hence M is a self-
cogenerator module.

�

Definition 2.5. Let M be an R-module
and let p be a prime ideal of R. Define a
set Sp = {r ∈ R : r

1
≡ 0 in Rp}. Note

that, this is an ideal of R. Define a set
Tp = {x ∈ M : x

1
≡ 0 in Mp}. Note that,

this is a submodule of M .
A prime ideal p is called good for M

if there exists some a ∈ R \ p such that
aTp = (0). For example, if Tp is finitely
generated for any prime ideal p and for any
R-module M then p is good for M [9].

In the view of above terminology, the fol-
lowing theorem characterize the comultipli-
cation module.

Theorem 2.6. Let R be any ring, and let
M be an R-module such that every maxi-
mal ideal of R is good for M . Then M is
a comultiplication R-module if and only if
Mm is a comultiplication Rm-module for ev-
ery maximal ideal m of R.

Proof. Suppose that M is a comultiplication
R-module. Let m be any maximal ideal of
R. Let N be any submodule of Mm. De-
fine N ′ = {x ∈ M : x/1 ∈ N}. Obviously,
N ′ is a submodule of M . Let annRm(N) ⊆
annRm(y) for some y = y1/s ∈Mm.

Let r ∈ annR(N ′). This implies that
r/1 ∈ annRm(N) ⊆ annRm(y). Hence,
(r/1)(y1/s) = 0 implies that try1 = 0 for
some t ∈ R \m. Therefore, ry1 ∈ Tm. As m
is good for M , there exists some d ∈ R \ m
such that dTm = (0). This implies that r ∈
annR(dy1) implies annR(N ′) ⊆ annR(dy1)
and hence, dy1 ∈ N ′. This implies that
dy1/1 ∈ N and hence, y = y1/s = dy1/ds ∈
N . Therefore, Mm is a comultiplication
module.

Conversely, suppose that Mm is comul-
tiplication as an Rm-module for all maxi-
mal ideal m of R. Let L be a submodule
of M and x ∈ M such that annR(L) ⊆
annR(Rx). By Theorem [?], (L :R x) is
not a maximal ideal of R. Suppose that
(L :R x) is proper ideal of R. Then there
exists a maximal ideal m of R such that
(L :R x) ⊆ m. Then Lm is a submodule of
Mm. Let α/s ∈ annRm(Lm) for some α ∈ L
s ∈ R \ m. Now, for any y ∈ L, y/1 ∈ Lm.
This implies that (α/s)(y/1) = 0, that is,
tαy = 0 for some t ∈ R \ m. Therefore,
αy ∈ Tm. Now, m is good for M , implies
that aαy = 0. Since y is arbitrary element
in L, we conclude that aαL = (0), that is,
aα ∈ annR(L) ⊆ annR(Rx). Hence, aαx =
0. Therefore, α/s ≡ aα/as ∈ annRm(x/1).
Hence, we have annRm(Lm) ⊆ annRm(x/1).
Therefore, x/1 ∈ Lm. This implies that
x ∈ L. Therefore, we conclude that M is
a comultiplication module. �
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We know that every submodule of M is a
comultiplication module [9]. The converse
of above lemma need not be true. Con-
sider V be a two dimensional vector space
over a field F . Then obviously, it is a mod-
ule over F . But it is not a comultiplica-
tion module, as for any subspace V1 of di-
mension one is proper submodule of V and
neither V1 = annV (0) nor V1 = annV (F ).
However V1 is a comultiplication module, as
V1 = annV1(0) and (0) = annV1(F ).

Remark 2.7. In general an R- module M
may not contains a simple submodule. Con-
sider Z as a Z-module. Suppose N is a sim-
ple submodule of Z. Then N = Zx for any
non zero x ∈ Z. Hence

Zx ∼=
Z

annZ(x)
∼= Z,

which is a contradiction. Thus Z does not
have any simple submodule. However, if M
is comultiplication module then every non-
zero submodule of M contains a simple sub-
module [6, 3.2].

If M comultiplication module then
θ(N) ⊆ N , for any submodule N of M and
for any R-endomorphism θ on M [3]. How-
ever, if the map θ is monomorphism, then
θ(N) = N .

Definition 2.8. A non zero submodule S of
an R-module M is called second submodule
if for any a ∈ R, the map φ : S → S given
by x→ ax is either surjective or zero [4].

Proposition 2.9. If N is a second submod-
ule of an R- module M then annR(N) is a
prime ideal of R.

Proof. Let N be a second submodule of an
R- module M . If possible, suppose abN =
(0) and aN 6= (0), bN 6= (0).

Define the homomorphisms fa : N → N
and gb : N → N respectively by fa(x) = ax,
gb(x) = bx for all x ∈ N . Then Im(fa) =
aN 6= (0) and Im(gb) = bN 6= (0). Since
N is a second submodule, we conclude that

aN = N and bN = N . This implies that
abN = N = (0), which contradicts that N
is a second submodule. Therefore, annR(N)
is a prime ideal. �

Example 2.10. Let n be a fixed positive
integer. Then

(1.) Zn is a comultiplication Z-module.
(2.) Zn is a comultiplication Zn-module

[6, 3.8].

Proof. We prove only (1). The proof of (2)
is same as that of (1).

Let N be a submodule of Zn. Let o(N) =
d. Then n = md for some positive inte-
ger m. This implies that N = mZn. Put
I = dZ. Then dZ is an ideal in Z such that
N = annZn(dZ). Therefore, Zn is a comul-
tiplication Z-module.

�

Example 2.11. Let p be any prime num-
ber. Let M = Z(p∞). Then M is a comulti-
plication Z-module [3, 3.2].

Proof. Fix a prime integer p. Define a set

Qp = { r
pt

: r, t ∈ Z}.

Then Qp is additive abelian group contain-

ing Z. Define a set M = Z(p∞) = Qp

Z . Then
M is a Z-module. Let N be any submodule
of M . Then N = Z(1/pi + Z) for some inte-
ger i. Set I = piZ. Now, annM(piZ) = N.
Hence M is a comultiplication module. �

Now we have an example which shows
that not every R-module is comultiplication
module.

Example 2.12. [3, 3.9] Consider Z as a Z-
module. Now, 2Z is a submodule of Z, we
have

annZ(2Z) = {m ∈ Z : 2Zm = 0} = (0).

Now, if Z is a comultiplication module then
by [3], we have

2Z = (0 :Z annZ(2Z)).
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But

(0 :Z annZ(2Z)) = (0 :Z 0) = Z 6= 2Z.

Therefore, Z is not a comultiplication mod-
ule.

Definition 2.13. A non empty family of
submodules {Ni}i∈I of an R-module M
is called coindependent provided for every
nonempty finite subset J of I and element
i ∈ I \ J , Ni + ∩j∈JNj = M [10].

Definition 2.14. An R module M has fi-
nite dual Goldie dimension providedM does
not contain an infinite coindependent fam-
ily of proper submodules. In this case the
supremum of cardinalities of family of coin-
dependent submodules is called dual Goldie
dimension [10] .

Theorem 2.15. A ring R is semi-local if
and only if the R- module R has finite dual
Goldie dimension.

Proof. First, suppose that R is a semi local
ring. If possible, suppose that {Ii}i∈∆ for
all i be an infinite family of coindependent
ideals of R. Then, Ii ⊆ mi for some maxi-
mal ideals mi of R. Since the family {Ii}i∈∆

is coindependent, Ii + Ij = R for all i 6= j
and hence any maximal ideal can contain
Ij for atmost one j ∈ ∆. But this contra-
dict that R is semi-local. Therefore, R as
an R-module has finite coindependent fam-
ily of submodules and hence has finite dual
Goldie dimension.

Conversely, suppose that R-module R has
finite dual Goldie dimension. If possible,
suppose that R is not semi-local. But then
the family of all maximal ideals in R will
form an infinite family of coindependent
ideals of R, which contradicts that R has
finite dual Goldie dimension. Therefore, R
is semi-local.

�

Remark 2.16. [10] The dual Goldie dimen-
sion of a semi-local ring R is the number

of distinct maximal ideals of R. If possi-
ble, suppose that R has m + 1 dual Goldie
dimension, where m is the number of dis-
tinct maximal ideals mi (1 ≤ i ≤ m) of
R. Then there exists a coindependent fam-
ily {Ii}m+1

i=1 of ideals of R such that every
maximal ideal can contain Ij for atmost one
j. But this contradicts that R has only m
maximal ideals.
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