Thermodynamic Approach for Oxidation of P-Chloro Benzoic Acid Hydrazide by Thallium (III) in Acidic Medium- A Kinetic and Mechanistic Study

A. S. Varale¹, Y. S. Varale²

¹Department of Chemistry, Athalye-Sapre-Pitre College, Devrukh-415804, Dist-Ratnagiri Maharashtra State, India
²Department of EVS, Dr. Ambedkar College of Commerce and Economics, Wadala Mumbai-400031 Maharashtra State, India

Abstract: The kinetics of oxidation of benzoic and p-Chloro benzoic acid hydrazide by Thallium(III) in a mixture of perchloric and hydrochloric acid medium at a constant ionic strength has been planned to study iodometrically.

\[\text{TI}^{III} + \text{Hydrazide} \rightarrow \text{Complex} \quad K_c \]

\[\text{Complex} \rightarrow \text{TI}^{I+} \text{Intermediate} \quad k_1 \]

\[\text{TI}^{III}+\text{Intermediate} \rightarrow \text{TI}^{I} + \text{Products} \quad \text{fast} \]

The increase in [H⁺] and [Cl⁻] decreases the rate of the reaction. The activation parameters were also determined and a mechanism is predicted.

Keywords: kinetics, Thallium (III), Oxidation.

1. Introduction

Chemical kinetics is highly useful in chemical Engineering applications. It provides the most general method to determine the mechanism of reactions. Oxidation reaction is one of the most important types of organic reactions in solution in which the reagent atom(s) accepts electron from the organic molecule being oxidized. The complementary reaction between TI¹ and AuCl₄ was studied in 3.0 mol dm⁻³ HCl medium by Anna N Gidd and Gavisiddapa S Gokavi.

Other investigations have included those of the oxidation of captive oxalate [1] the reaction of phenyl Thallium dicarboxylate with tetramethyltin in methanol [2] oxythallation of norbornene derivatives in aqueous solution and in methanol [3] the oxidation of aryl dialkyl amines [4] the Thallium (III) promoted hydrolysis of thiol esters[5] and the Thallium (III) oxidation of catechol in chloride containing media[6]. An interesting study of oxidation of anilines by Thallium (III) acetate in aqueous acetic acid is also reported [7]. Dinesh kumar and Yugul Gupta studied oxidation of benzilic acid, phenyllactic and 2-Hydroxyisobutyric acids with Thallium(III) occurs via the formation of at least three complexes between the metal ion and organic acids.

Chromium compounds have been used in aqueous and non aqueous medium for the oxidation of a variety of organic compounds [8-9] Chromium especially Cr (VI) reagents have been proved to be versatile Reagents and capable of oxidizing almost all the oxidisable organic functional groups [10-11].The effect of varying solvent composition on the reaction rate was studied by varying the concentration of acetic acid 45% - 65%. The reaction rate increases with the increase in the proportion of acetic acid in the medium is suggesting the involvement of ion-dipole interaction [12, 13] The reaction does not induce polymerization of acrylonitrile indicating the absence of free radical pathway The reaction rate decreases with increasing the concentration of Al³⁺ ions confirming the involvement of three electron process in this reaction.

2. Material and Methods

The stoichiometry of the reaction was determined using a known excess of thallium (III) over hydrazide and determining remaining oxidant iodometrically after 24 hrs. The results consistent with equation-(1) were obtained. The corresponding carboxylic acid was characterized by determining it’s M.P.

\[\text{RCONNH}_2 + 2 \text{TI}(\text{III}) + \text{H}_2\text{O} \rightarrow \text{R-COOH} + \text{N}_2 + 4\text{H}^+ + 2\text{TI}(\text{I}) \]

3. Results and Discussion

The reaction occurs rapidly in perchloric acid medium but in the presence of hydrochloric acid the rate is measurable. Therefore the reaction was carried out in a mixture of both the acids. The effect of reactants on the
reaction was studied at constant [HCl] and [HClO₄] of 0.1 mol dm⁻³ each and ionic strength of 0.6 mol dm⁻³. Concentration of oxidant was varied from 6.4x10⁻⁴ to 6.4x10⁻³ mol dm⁻³ keeping the [hydrazide] constant at 1x10⁻¹ mol dm⁻³. Since, the pseudo first order rate constants were fairly constant (2.30 ± 0.1x10⁻⁴ S⁻¹ for p-Cl BAH at 25°C, the order with respect to [oxidant] is unity. The effect of [hydrazide] was studied between the concentration range from 1x10⁻² to 1x10⁻¹ mol dm⁻³ keeping the [oxidant] constant at 3.0x10⁻³ moldm⁻³. The pseudo first order rate constants increases with increase in concentration and the order with respect to hydrazide is found to be fractional.

To study the effect of [H⁺] and [Cl⁻], [oxidant], [hydrazide] and ionic strength were kept as 3.0x10⁻³, 1x10⁻¹ and 0.6 mol dm⁻³ respectively. To vary [H⁺] and [Cl⁻], HClO₄ and NaCl were used. Increase in [H⁺] from 7x10⁻² to 5.4x10⁻¹ mol dm⁻³ decreases 10⁻⁴ k(S⁻¹) from 2.03 to 0.080 for p-Cl BAH at 25°C. Increase in [Cl⁻] from 7x10⁻² to 5.4x10⁻¹ mol dm⁻³ decreases 10⁻⁴ k(S⁻¹) from 1.40 to 0.060 for p-Cl BAH at 25°C. The relative permittivity was varied by changing the 1,4-dioxan content from 5 to 40 % v/v. The rate was found to decrease with decrease in relative permittivity. Since there is no formation of free radicals in the reaction, the reaction proceeds with two-electron transfer step.

To study the effect of [H⁺] and [Cl⁻], [oxidant], [hydrazide] and ionic strength were kept as 3.0x10⁻³, 1x10⁻¹ and 0.6 mol dm⁻³ respectively. To vary [H⁺] and [Cl⁻], HClO₄ and NaCl were used. Increase in [H⁺] from 7x10⁻² to 5.4x10⁻¹ mol dm⁻³ decreases 10⁻⁴ k(S⁻¹) from 2.03 to 0.080 for p-Cl BAH at 25°C. Increase in [Cl⁻] from 7x10⁻² to 5.4x10⁻¹ mol dm⁻³ decreases 10⁻⁴ k(S⁻¹) from 1.40 to 0.060 for p-Cl BAH at 25°C. The relative permittivity was varied by changing the 1,4-dioxan content from 5 to 40 % v/v. The rate was found to decrease with decrease in relative permittivity. Since there is no formation of free radicals in the reaction, the reaction proceeds with two-electron transfer step.

The Michealis - Menten plots of 1/kobs versus 1/[Hydrazide] were linear with an intercept in support of the complex formation.

The rate law was verified by plotting 1/kobs against 1/[Hydrazide] and 1/kobs against [H⁺] which were found to be linear. From the slopes and intercepts of these plots the values of Kc and K_H were determined [14-16].

Table 1: values of Kc and k₁ [HCl] = 0.1 moldm⁻³, [HClO₄] = 0.1 moldm⁻³[TlIII] = 3.0 X 10⁻³ mol dm⁻³, I = 0.6 mol dm⁻³

<table>
<thead>
<tr>
<th>Hydrazide</th>
<th>Kc (mol dm⁻³)</th>
<th>10⁻⁴ x k₁ (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Cl BAH</td>
<td>16.66</td>
<td>17.50 15.00 17.50 12.5 3.33 10.00</td>
</tr>
</tbody>
</table>

The values of Kc are given in Table 1 and those of K_H were found to be 13 and 16 mol⁻¹ dm³ for benzoic and p-Chloro benzoic acid hydrazides respectively. The electrophilic character of TlCl₂⁺ among the thallium (III) chlorocomplexes is highest thus making it the reactive species [17-18].
4. Mechanism

\[
\begin{align*}
\text{Mechanism} & \quad \text{Complex} \\
\end{align*}
\]

Relative Reactivities of Hydrazides

The order of reactivities of Benzoic and substituted benzoic acid hydrazides under investigation is:

\[
p - \text{Cl BAH} < \text{BAH} < p-\text{OCH}_3 \text{BAH}
\]

Chlorine has electron withdrawing inductive effect but an electron-donating mesomeric effect since it is in the para position.

Acknowledgement

The authors are thankful to Dr G. S. Gokavi for his keen interest and help during the course of work.

References

Volume 3 Issue 5, May 2014