International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Detection and Tracking of Multiple Face Using TMS320C6748 DSP Board

Ashwith Kumar S K

PG Scholar, Department of ECE, Channabasaveshwara Institute of Technology Tumkur, India

Abstract: Face detection is a very challenging and interesting problem. In this paper, we discussed an application for automatic face detection and tracking on video streams from surveillance cameras in public or commercial places. In many situations it is useful to detect where the people are looking for, e.g. exhibits in, commercial malls, and public places. So prototype is designed to work with cameras for the face detection and tracking system based on the platforms CCS and OpenCV. The system is based on Haar Cascade Classifier. This system can be used for security purpose to record the visitor face as well as to detect and track the face. A program is developed using OpenCV that can detect people's face and also track from the camera.

Keywords: TMS320C6748, Code Composer Studio V5, OpenCV, Haar like feature

1. Introduction

The goal of this paper is to provide an easier human-machine interaction routine when user authentication is needed through face detection. With the aid of a regular camera, a machine is able to detect and track a person's face. Face detection is a process to analysis the input image and to determine the position and the orientation of face. Face detection is the base for face tracking and face recognition. The common face detection methods are: knowledge-based approach, Statistics-based approach and integration approach with different features or methods. The knowledge-based approach [1] and [2] can achieve face detection for complex background images to some extent and also obtain high detection speed, but it needs more integration features to further enhance the adaptability. Statistics-based approach [3] and [4] detects face by judging all possible areas of images by classifier, which is to look the face region as a class of models, and use a large number of "Face" and "nonface" training samples to construct the classifier.

The Adaboost algorithm [3] and [4] appears in recent years; it trains the key category features to the weak classifiers, and cascades them into a strong classifier for detection of face. The method has real-time detection speed and high detection accuracy, but needs long training time. This paper describes a system that can detect and track human face in real time using haar-like features where the detection algorithm is based on Haar cascade classifier.

2. Related Work

Paper ID: 0201457

Normally face detection is used in biometrics, as a part of a facial recognition system. Previous days the detection of face is achieved by algorithms without using hardware's like development boards or separate circuits etc. But now days some recent digital cameras also use face detection for autofocus. Actually to detect a face, camera can be integrated into a device to monitor and detect any face that walks by. Similarly this paper shows prototype or partial implementation of this type of work. In this proposed methodology the camera is connected to the DSP board TMS320C6748 (LCDK), which is programmed using Code

Composer Studio V5. The Adaboost algorithm is used here to detect the faces.

3. Description of Tools

In this section the tools and methodology to implement and evaluate face detection and tracking using OpenCV are detailed.

3.1. OpenCV

OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly aimed at real time computer vision, developed by Intel and now supported by Willow Garage [5]. It is free for use under the open source BSD license. The library is cross-platform. It focuses mainly on real-time image processing. If the library finds Intel's Integrated Performance Primitives on the system [6], it will use these proprietary optimized routines to accelerate it. The library was originally written in C and this C interface makes OpenCV portable to some specific platforms such as digital signal processors. Wrappers for languages such as C#, Python, Ruby and Java (using JavaCV) have been developed to encourage adoption by a wider audience [3]. However, since version 2.0, OpenCV includes both its traditional C interface as well as a new C++ interface. This new interface seeks to reduce the number of lines of code necessary to code up vision functionality as well as reduce common programming errors such as memory leaks (through automatic data allocation and de-allocation) that can arise when using OpenCV in C[9].

3.2 Code Composer Studio

Code Composer Studio (CCS) is the integrated development environment (IDE) provided by Texas Instrument. It is based on the Eclipse framework and therefore requires a Java Runtime Environment (JRE).

3.2.1 System Requirements

To use Code Composer Studio, your operating platform must meet the following minimum requirements:

- Windows 7
- 2GB RAM

www.ijsr.net

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

- 80GB HDD
- · Intel processor

3.3 C6748 DSP Processor

Digital Signal Processors (DSP) is specific processors used for signal processing. Digital signal processing is used in many areas such as sound, video, computer vision, speech analysis and synthesis, etc. Each of these areas need digital signal processing and can therefore use these specific processors. DSPs are found in cellular phones, disk drives, radios, printers, MP3 players, HDTV, digital cameras and so on. DSPs take real world signal like voice, audio, video, temperature, pressure, position, etc. that have been digitized using an analog-to-digital converter and then manipulate them using mathematical operations. DSPs are usually optimized to process the signal very quickly and many instructions are built such that they require a minimum amount of CPU clock cycles.

The C6748 is based on Texas Instruments very long instruction word (VLIW) architecture. This processor is well suited for numerically intensive algorithms. The internal program memory is structured so that a total of eight instructions can be fetched every cycle. The C6748 has a clock rate of 375 MHz and is capable of fetching eight 32-bit instructions every 1=375 MHz or 2.67 ns. The processor includes both floating-point and fixed-point architectures in one core.

The C6748 includes 326 kB of internal memory (32 kB of L1P program RAM/cache, 32 kB of L1D data RAM/cache and 256 kB of L2 RAM/cache), eight functional units composed of six ALUs and two multiplier units, an external memory interface addressing 256 MB of 16-bit mDDR SDRAM, and 64 32-bit general purpose registers. In addition, the OMAPL138 features 128 kB of on-chip RAM shared by its C6748 and ARM9 processor cores [7].

3.3.1 TMS320C6748 Fixed- and Floating-Point DSP

Features

- 375- and 456-MHz C674x Fixed- and Floating- Point VLIW DSP.
- C674x Instruction Set Features
- C674x Two-Level Cache Memory Architecture
- 128KB of RAM Shared Memory
- LCD Controller
- Two Serial Peripheral Interfaces (SPIs) Each with Multiple Chip Selects
- Two Multimedia Card (MMC)/Secure Digital (SD)Card Interfaces with Secure Data I/O (SDIO) Interfaces
- Two Master and Slave Inter-Integrated Circuits [8].

Applications

- Currency Inspection
- Machine Vision (Low-End)
- Biometric Identification

Paper ID: 0201457

Figure 1: TMS320C6748 LCDK kit

4. Face Detection

The main function of this step is to determine whether human faces appear in a given image, and where these faces are located at. The expected outputs of this step are patches containing each face in the input image. In order to make further face recognition system more robust and easy to design, face alignment are performed to justify the scales and orientations of these patches. Besides serving as the preprocessing for face recognition, face detection could be used for region-of-interest detection, retargeting, video and image classification, etc. In 1995, Freund and Schapire first introduced the AdaBoost algorithm [1]. It was then widely used in pattern recognition. The AdaBoost Algorithm.

a. Input: Give sample set

$$\begin{array}{l}
 s = (x_i - y_i) \dots (x_n - y_n) \\
 x_i \in X, \ y_i \in Y = \{-1, +1\} \\
 & \text{Number of iterations T}
 \end{array}$$

b. Initialize:
$$W_{i,j} = \frac{1}{N}$$
 i = 1, 2,...... N

- **c.** For t = 1, 2,
- i) Train weak classifier using distribution W.
- ii) Calculate the weight (w) training error for each hypothesis

$$h_n \varepsilon_n = \sum_{i=1}^N W_{i,j} \mid h_i - y_i \mid$$

iii) Set

$$a_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

iv) Update the weights:

$$W_{t=1,i} = 1 + \frac{W_{i,t}}{Z_t} \times \begin{cases} e^{-at} \\ e^{at} \end{cases}$$
$$= \frac{W_{t,i} \exp(-a_t y_i h_t(x_i))}{Z_t}$$

Z_t is normalization constant

d. Output: the final hypothesis, also the stronger classifier.

$$H(x) = sign\left(\sum_{t=1}^{T} a_t h_t(x)\right)$$

4.1 Feature Extraction

After the face detection step, human-face patches are extracted from images. Directly using these patches for face recognition have some disadvantages, first, each patch usually contains over 1000 pixels, which are too large to build a robust recognition system Second, face patches may be taken from different camera alignments, with different face expressions, illuminations, and may suffer from occlusion and clutter. To overcome these drawbacks, feature extractions are performed to do information packing, dimension reduction, salience extraction, and noise cleaning. Here feature extraction takes place using haar cascade classifiers.

4.2 Face Detection using Haar Cascades

Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones. It is a machine learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images. Here we will work with face detection. Initially, the algorithm needs a lot of positive images (images of faces) and negative images (images without faces) to train the classifier. Then we need to extract features from it. For this, haar features shown in below image are used. They are just like our convolutional kernel. Each feature is a single value obtained by subtracting sum of pixels under white rectangle from sum of pixels under black rectangle.

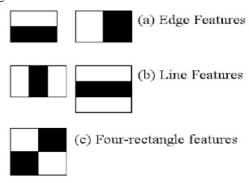


Figure 2: Haar like features

Now all possible sizes and locations of each kernel is used to calculate plenty of features. For each feature calculation, we need to find sum of pixels under white and black rectangles. To solve this, they introduced the integral images. It simplifies calculation of sum of pixels, how large may be the number of pixels, to an operation involving just four pixels. But among all these features we calculated, most of them are irrelevant. For example, consider the image below. Top row shows two good features. The first feature selected seems to focus on the property that the region of the eyes is often darker than the region of the nose and cheeks. The second feature selected relies on the property that the eyes are darker than the bridge of the nose. But the same windows applying on cheeks or any other place is irrelevant. So we can select the best features out of 160000+ features using Adaboost.

Paper ID: 0201457

Figure 3: Feature extraction using haar

For this, we apply each and every feature on all the training images. For each feature, it finds the best threshold which will classify the faces to positive and negative. But obviously, there will be errors or misclassifications. We select the features with minimum error rate, which means they are the features that best classifies the face and non-face images. In an image, most of the image region is non-face region. So it is a better idea to have a simple method to check if a window is not a face region. If it is not, discard it in a single shot. Don't process it again. Instead focus on region where there can be a face. This way, we can find more time to check a possible face region.

For this they introduced the concept of Cascade of Classifiers. Instead of applying all the 6000 features on a window, group the features into different stages of classifiers and apply one-by-one. (Normally first few stages will contain very less number of features). If a window fails the first stage, discard it. We don't consider remaining features on it. If it passes, apply the second stage of features and continue the process. The window which passes all stages is a face region or else non face region.

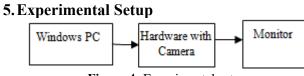


Figure 4: Experimental setup

Above figure 4 shows the working set up of the required model. Here developed algorithm is dumped to the DSP kit using the emulator XDS100v2 and Code Composer Studio. Camera is interfaced with DSP kit which is used to capture the video. The processing takes place in the DSP processor and the face detection output displayed in the monitor. To implement face detection and tracking tools required are:

5.1. Software Required

Code Composer Studio V5, C6000 SYS/BIOS by Texas Instrumentation.

5.2. Hardware Required

PC preferably running windows 7, Texas Instrumentation DSP LCDK kit TMS320C6748, Emulator XDS100v2 and a camera.

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

6. Results

The input video is captured by camera which is connected to the hardware. The applied face detection algorithm generates rectangle class which keeps track of the face coordinates.

Figure 5: Result of Face Detection in video

Figure 6: Result of Face Detection in video

7. Conclusion

Prototype system for automatic face detection and tracking is successfully implemented and tested. The test results show that the detection method used in the paper can accurately detect and trace human face in real time. This paper shows the intersection of Image processing and embedded systems, by using openCV and TMS320C6748 (LCDK) DSP kit real time implementation is possible. Future Work: Along with face detection, eye, mouth and other object detection may also be implemented

References

- [1] A. Faizi (2008), "Robust Face Detection using Template Matching Algorithm,", *University of Toronto*, Canada.
- [2] P. Feng (2004), "Face Recognition based on Elastic Template,", *Beijing University of Technology*, China.
- [3] Z. Zhang (2008), "Implementation and Research of Embedded Face Detection using Adaboost", *Shanghai JiaoTong University*, China.
- [4] K.J. Wang, SH.L. Duan & W.X. Feng (2008), "A Survey of Face Recognition using Single Training Sample", *Pattern Recognition and Artificial Intelligence*, China, Vol. 21, Pp. 635–642...
- [5] CH. Y. Lu, CH.SH. Zhang & F. Wen (1999), "Regional Feature based Fast Human Face Detection", *J. Tsinghua Univ. (Sci. and Tech.)*, China, Vol. 39, Pp. 101–105.

- [6] Open Source Computer Vision Library Reference Manual –intel
- [7] "Digital Signal Processing Application on the Texas Instrument C6748 Processor" by Julien Osmalskyj and Jean-Jacques Embrechts(2014)
- [8] http://www.ti.com.cn/cn/lit/ds/symlink/tms320c6748.pdf
- [9] Gary Bradski & Adrian Kaehler O"Reilly (2008), "Learning OpenCV", O'REILLY Media

Author Profile

Mr. Ashwith Kumar S K, M. Tech Scholar in Electronics, Dept. of Electronics and Communication, Chennabasaveshwar Institute of Technology Gubbi, Tumkur, Karnataka, India.