
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Certification of Components and Component Based
Systems

Vijay1, Devender Kumar2

Department of Computer Science & Engineering, Meri College of Engineering & Technology
Sampla, Bhadurgarh, Haryana, India

Assistant Professor, Dept. of Computer Science & Engineering, MERI College of Engineering & Technology
Sampla, Bhadurgarh, Haryana, India

Abstract: Component Based Software Development (CBSD) is focused on assembling existing components to build a software system,
with a potential benefit of delivering quality systems by using quality components. The quality of a component-based system depends on
the quality of its components, and a framework and integration process used. Hence, techniques and methods for quality assurance and
assessment of a component-based system would be different from those of the traditional software engineering methodology. It is
essential to quantify factors that contribute to the overall quality, for instances, the trade off between costs and quality of a component,
analytical techniques and formal methods, and quality attribute definitions and measurements. In this work I explored about
Component certification, Component certification techniques, IEEE 1517 standard, Component testing technologies like black box
testing, Software fault injection and operational system testing.

Keywords: API, Applications, Black Box Testing, IEEE1517, OTS, Software Fault Injection, Various approaches.

1. Introduction

Software, as a product, delivers the computing potential
embodied by computer hardware. And it is an information
transformer producing, managing, acquiring, modifying,
displaying, or transmitting information that can be as simple
as a single bit or as complex as a multimedia simulation [1].

Software engineering is defined as the application of a
systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software; that is,
the application of engineering to software. It is based on
three layers, that is, process, methods, and tools. Software
engineering process is the glue that holds the technology
layers together and enables rational and timely development
of computer software. Software engineering methods
provide the technical way for building software. Methods
encompass a broad array of tasks that include requirements
analysis, design, implementation, testing, and maintenance.
And finally, software engineering tools provide automated
or semi-automated support for the process and the methods
[1].

According to Pressman [1], Software engineering moved
into its fourth decade in the 90s. In the 70’s the first
traditional methodologies were defined. It is meant that
software development using a set of mature and stable
technologies, which often include mainframe-based
technologies, structured analysis and development
techniques, and procedural languages such as COBOL and
RPG. Applications often, built using this approach, are used
on mainframes and minis. Starting in the 80’s, the theory
and practice of the object-oriented approach evolved. This
usually means adopting an object-oriented methodology
based on object-oriented languages. During the 80s, the
object-oriented approach was expanded to a theory that
covered most of the aspects of software development,
including testing and project management. Now a days ,

component-based development (CBD) is in the leading edge
phase. Indeed, there are now a number of technologies
appropriate for, and people with experience in, the
application of CBD. The evolution of software industry
from 1970’s to 2014 has evolved with different approaches
as structured, object oriented, distributed systems and
component-based approach. In industry there is of course a
history of this maturity as illustrated in Figure 1.1 and
described below [2].

Figure 1: The evolution to components in the industry

The objective of the certification is evaluate the
component’s quality and component based system process
by using standards such as IEEE 1517 and testing techniques
like Black Box Testing, software fault injection, operational
testing.

2. Methodology

This paper selects one of the Standard IEEE 1517 for
assurance of components and component-based systems.
Since it is very difficult to certify or assure the quality of
components from various vendors and ever changing
requirements of software industry. Therefore, this study
redevelops it through applying technologies for certifying

Paper ID: 020132211 1684

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

component and component-based system by using black box
testing, fault injection system and operational system testing.

3. Prior Approaches

 Structured Approach:- This approach contains basic
steps of a software development process such as analysis,

design, implementation, testing, and maintenance. Each of
the elements of the analysis model [1] provides
information that is required to create a design model. The
flow of information during software design is illustrated in
Figure 2 as below.

Figure 2: Analysis and design models for structured approach

For specifying software, this approach offers some variety of
elements such as a data dictionary, data flow diagrams, state
transition diagrams, entity-relationship diagrams; process
specifications, control specifications, and data object
descriptions for analysis model. The design phase produces
a data design, an architectural design, an interface design,
and a procedural design with the help of various methods
and techniques. A data flow diagram consists of processes,
data flows, actors, and data stores. The data dictionary
contains details missing from data flow diagrams. Entity-
relationship (ER) diagrams highlight relationships between
data stores that otherwise would only be seen in the process
specifications. Each ER data element corresponds to one
data flow diagram data store.

In design phase, the most favorite technique is structured
programming to produce procedural design. Languages such
as Pascal, Ada and C perform it. The broad definition of
structured programming refers to any software development
technique that includes structured design and results in the
development of a structured program. Structured
programming allows programs to be broken down into
blocks or procedures, which can be written without detailed
knowledge of the inner workings of other blocks, thus
allowing a top-down design approach or stepwise refinement
[3].
 Object Oriented Approach:- Object-oriented approach

promises a way for implementing real-world problems to
abstractions from which software can be developed
effectively. Object-orientation offers conceptual
structures that support this sub-division. Object-
orientation also aims to provide a mechanism to support
the reuse of program code, design, and analysis models

[5]. A class is ‘A description of a set of objects that share
the same attributes, operations, methods, relationships
and semantics.’ An object is ‘an instance that originates
from a class, it is structured and behaves according to its
class.’ In object-orientation, three main principles are
important. Encapsulation, which is also known as
information hiding, provides the internal implementation
of the object without requiring any change to the
application that uses it. The ability of one class of objects
to inherit some of its properties or methods from an
ancestor class is named inheritance in object technology.
Polymorphism is producing various results for a
generalized request based on the object that is sent to.
The object-oriented approach allows development-time
reuse [2], meaning that compared to previous
approaches, it enhances developers’ ability to build
software that reuses pieces designed and coded by other
developers.

Figure 3: Object-oriented application

Paper ID: 020132211 1685

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Our Approach

Component Certification is defined as “To attest as certain;
give reliable information of; confirm, to testify to or vouch
for in writing, to guarantee; endorse reliably; to certify a
document with an official seal.” Component certification [4]
is the process that involves:
 Component outsourcing: managing a component

outsourcing contract and auditing the contractor
performance;

 Component selection: selecting the right components in
accordance to the requirement for both functionality and
reliability; and

 Component testing: confirm the component satisfies the
requirement with acceptable quality and reliability

 The objectives of component certification are to
outsource, select and test the candidate components and
check whether they satisfy the system requirement with
high quality and reliability.

3.1 Technologies

 Black Box Testing: Black box testing is a family of
software testing techniques that selects test cases without
regard for the software's syntax. To perform black box
testing, an executable component, inputs, and an oracle
(which decides if failure has occurred) are needed. In
contrast, white-box testing techniques consider the code
when selecting test cases. For example, one white-box
testing strategy to selects test cases such that each
possible outcome from each decision point occurs. Black
box testing is not without criticism, however. Black box
testing can fail exercise significant portions of the code,
and from a certification perspective, that is worrisome.
The value-added by black box testing is also dependent
on having accurate oracles. Faulty oracles are capable of
allowing bad software to be certified. Faulty oracles can
also allow quality software to not get certified Correct
oracles are of paramount importance to our certification
methodology and correct oracles may be difficult for a
component purchaser to derive. Our recommendation
here is that the OTS consumer develop their own oracle
according to what they want the component to do not
necessarily according to the specification from the OTS
vendor. By doing this the consumer can test the quality
of the component against their requirements for what the
component is expected to do and not necessarily against
the functionality claimed by the vendor[20]. There is yet
another serious problem with OTS software and that is
that OTS components can have unknown malicious
functionality In short blackbox testing plays an important
yet limited the quality of software components
Admittedly the costs of performing blackbox testing by a
OTS consumer cannot be overlooked.

 Software Fault Injection:- There are many different
forms of fault injection. The particular fault injection
technique that our certication methodology will use is
called Interface Propagation Analysis (IPA) [6] perturbs
i.e. corrupts that propagate through interfaces between
components to perturb states access to the interfaces that
components use for communication is needed. We use a
small software routine to a different corrupt software
executes called a perturbation function that actually

makes the replacement from the original state. To
observe the system wide impact of component failures
IPA must be told what component failure modes to inject
and what system failure modes to be on the lookout for
IPA then checks to see if any of these system failure
modes manifest System failure modes can be defined as
faulty system output data faulty global system data or
corrupted data owing between successor components
Since the OTS consumer is the system builder it is
reasonable to expect that they know what constitutes as a
system failure.

 Operational System Testing:- In addition to system
level fault injection operational system testing with a
OTS component embedded is a complementary means
for determining how the system will tolerate the
component Operational system testing executes the full
system with system test cases. The difference between
operational system testing and fault injection is that
operational system testing does not employ perturbation
functions to perturb states. The output information a
component produces does not get modified and the
system is executed using original states. An advantage
here over fault injection is that when a component really
fails the system experiences an actual component failure.
This provides a more accurate assessment of system
tolerance. The downside is that if the component rarely
fails an enormous amount of system level testing will be
necessary to make that determination Operational system
testing will however be valuable for system level
reliability prediction.

Assurance: Assurance is the major issue for quality of
software used in the world. The business of global reuse of
components via the World Wide Web cannot succeed unless
the quality of components cannot be assured.

IEEE Std. 1517: IEEE 1517 was published in 1999 as a
supplement to IEEE/EIA 12207 (IEEE, 1999). It is intended
as a specification of the minimum requirements that a
software life cycle model must meet to enable and support
proper reuse.

3.2 Application of IEEE Std. 1517

IEEE Std. 1517 applies to:
 The acquisition of software and software services
 The acquisition of assets
 The supply, development, operation, and maintenance of

software applications and systems using a CBD approach
 The supply, development, management, and maintenance

of assets
 The establishment of a systematic reuse program and

components strategy at the organization or enterprise level

3.3 Static Analysis for Assurance of Component – Based
Software

Static component analysis that extracts and records relevant
information from previously developed components is a
tractable approach for improving assurance and offers some
advantages over dynamic analysis.

Paper ID: 020132211 1686

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Conclusion

The conclusion of the paper is focusing on development of
component assurance taxonomy, as well as information-
extraction and analysis strategies. I have identified assurance
in component-based software, and approaches supporting
analysis of these properties. The IEEE 1517 standard may be
better one to get assured about the quality. A first step is the
identification of analysis techniques and approaches that can
be used in the determination of these properties. I also wrote
about static information extraction techniques that can be
applied to component-based software. Where applicable,
these strategies will be codified in an analysis workbench
specification, a prototype analysis workbench, and in criteria
useful for the development, acquisition, and analysis of
component-based software. Static analysis that extracts and
records relevant information from previously developed
components is a tractable approach for improving assurance
and offers some advantages over dynamic analysis.

Reference

[1] Pressman Roger S, Software Engineering, Tata McGraw
Hill, 2006.

[2] Herzum Peter, Sims Oliver, Business Component
Factory, Wiley, 1999

[3] Huizing M., Component Based Development, 2000
[4] Cai Xia, LYU Michael R., wong Kam-Fai, KO Roy,

Component-Based Software Engineering: Technologies,
Development Frameworks, and Quality Assurance
Schemes.

[5] Hill, Bennett, McROBB, Farmer, Object Oriented
System Analysis and Design (using UML), 2nd Edition,
McGraw Hill, 2002

[6] Jerey Voas, An Approach to Certifying Off-the-Shelf
Software Components Reliable Software Technologies
Corporation.

Author Profile

Vijay has done B.Tech in Information Technology
(Session 2008-2012) from MERI College of
Engineering, Asanda (Bahadurgarh) affiliated to M.D.
University, Rohtak (Haryana). He is pursuing M.Tech
in Computer Science & Engineering (Session 2012-

2014) from MERI College of Engineering, Asanda (Bahadurgarh),
India.

Paper ID: 020132211 1687

