
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Weight-based Ontology Pruning using Analysis of
Inference Engines for Semantic Web

Kavita D. Pandya1, Chirag Pandya2

1Kadi Sarva Vidhyalaya University, LDRP-ITR, Gandhinagar, Gujrat, India

2LDRP-ITR, Kadi Sarva Vidhyalaya University, Gandhinagar, Gujrat, India

Abstract: Semantic Web relies heavily on the conventional Ontologies that represent underlying concepts and data for the purpose of
comprehensive machine understanding using structural representation. Thus the success of Semantic web strongly depends on the
quality of ontologies. The Proliferation of ontologies for semantic web demands easy and fast access of it to the users. Thus quick access
to quality ontologies becomes prominent. In order to provide such ontologies this paper describes a new and efficient way of pruning
down the ontologies. Here pruning deals with removing less desirable data from different ontologies .This paper tends to focus on two
related areas namely analyzing ontologies using different Reasoners and then reducing the complexity of ontologies based on analysis
result .The complexity reduction is carried out using weight assignment to different relations using which system can itself decide
whether to eliminate the particular relation or not. Our goal is to provide semantic web with quality ontologies by removing multiple less
sensible relationships in the ontology.

Keywords: Semantic web, Ontology, Reasoners, Ontology pruning, relationships.

1. Introduction

The Semantic Web is an extension of the current Web in
which information is given a well-defined meaning, better
enabling computers and people to work in cooperation. It is
the idea of having data on the Web defined and linked in a
way that it can be used for more effective discovery,
automation, integration and reuse across various
applications. A widely known architecture is developed for
semantic web which is known as semantic web architecture
[13]. Ontology [2] plays a vital role in this architecture as it
represents knowledge as a concept within the domain which
uses shared vocabulary to denote the properties and inter-
relationships of those concepts. The Ontology language
OWL is a W3C recommendations and has three different
profiles: OWL Lite, OWL DL, OWL Full. Each profile of
ontology has a different context of OWL. OWL Lite
supports those users primarily needing a classification
hierarchy and simple constraint features. OWL DL supports
those users who want the maximum expressiveness without
losing computational completeness (all entailments are
guaranteed to be computed) and decidability (all
computations will finish in finite time) of reasoning
systems.OWL Full provides more complete integration with
RDF but its formal properties are less well understood.
Surveying the landscape of ontologies we observe a broad
spectrum of ontologies that differ in terms of size and
complexity. There exists much ontology that are very large
in size and complex. Dealing with such ontologies becomes
cumbersome for users. Thus this paper gives out with fair
methodology to comply with less complex ontologies.
Reasoners [16] are inference engines used to infer the logical
consequences of the ontology given as input. Ontology
reasoning is important to check out the semantics of
ontology based on metadata annotations. Reasoning is
important in semantic web if applications are to exploit the
semantics of ontology. When loading bulky ontologies
across various Reasoners, time taken is too elongated this is

not promising at application level. Hence, pruning down the
unenviable data from the knowledge base seems quite
supportive for Semantic Web applications. Thus this paper
focuses on managing the density of ontology and then
analysing its effect on the knowledge base and load time
taken by that ontology.

Our web is made of huge amount of data. Whenever a user
queries any data over web, the result that he/she retrieves
may not always be satisfactory. To overcome this problem
semantic web came into existence. It is the idea of having
data on the web defined and linked in a way that it can be
used for more effective discovery, automation, Integration
and reuse across various applications. So now when a user
queries for the same data over semantic web then result
retrieved is far better than the result retrieved by syntactic
web. For better implementation of semantic web potential
ontologies are required. Thus the research aims at providing
semantic web with strong background and user-friendly
retrieved result by enhancing the usage of efficient
ontologies.

1.1 Related Work

In this section we review work related to different aspects of
ontology:

Ontology Learning [2]: Ontology learning refers to
extracting ontological elements (conceptual knowledge)
from input and building ontology from them. It aims at semi-
automatically or automatically building ontologies from a
given text corpus with a limited human expert. Ontology
learning can be defined as the set of methods and techniques
used for building ontology from scratch, enriching, or
adapting an existing ontology in a semi-automatic fashion
using several sources. For Ontology learning, there are
different approaches defined for unstructured data and semi-
structured data. Learning approaches for unstructured data

Paper ID: 020132193 1623

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

are namely statistical approach, Natural Language
Processing approach and Integrated approach and similarly
learning approaches for semi structured data are namely Data
mining and Web-content mining.

Modularization of Ontology [3]: Modularization is a key
requirement to manage the size and complexity of large
ontologies by replacing each one by a set of smaller
ontologies. Two reasons for this requirement are that current
ontology languages do not allow partial reuse of ontologies
and ontologies are ever growing to cover more knowledge in
a specific domain. The paper [3] deals with both semantics
and structural aspects using random walk algorithm to
achieve a balance between them. The modularization
algorithm proposed in this paper introduces a scoring
function which calculates both inter and intra similarity
between nodes. The objective of this function is to maximize
the intra-module similarity and to minimize inter-module
similarity. The scoring function shows how appropriately
nodes have been grouped in their modules according to its
objectives. After calculating the similarity values most
similar nodes are kept with each other in one module
ignoring the least similar nodes. This way modularization is
carried out using similarity function.

Ontology Matching and Schema Integration [4]: Ontology
Matching is one of the crucial area that deals with matching
semantic concepts between different ontologies. Ontologies
are usually represented in the form of graph like structures.
This paper [4] presents an algorithm that works by giving
rank to the nodes using fine heuristic of the graph structured
ontologies. They have proposed a node ranking algorithm
wherein at initial phase lexical similarity between nodes of
two different ontologies is calculated. Lexical similarity
gives the longest common subsequence of similar lexical
found in nodes of two different ontologies. Using this lexical
similarity node rank is calculated as shown in paper []. Once
the node ranks for each node is obtained the matching
problem can be tackled in only one traversal without any
difficulty. Nodes with node rank differing in some small
value range are said to match each other. Finally in this way
matching schema of ontologies is obtained.

Large Ontology Matching using Reduction anchors [5]: Two
kinds of reduction anchors are introduced here namely
positive and negative reduction anchors, which are proposed
to reduce the time complexity in matching Ontologies.
Positive reduction anchors use the concept hierarchy to
predict the ignorable similarity calculations. Negative
reduction anchors use the locality of matching to predict the
ignorable similarity calculations. The new way of
modularization namely overlapping modularization is
adapted where information loss is reduced considerably. A
threshold value of both these anchors is predefined
depending on the complexity of ontology. Thus if the value
of both anchors is more than the predefined threshold value
than match between ontologies is detected.

2. Outline

In this paper we first describe on what basis Ontology
Pruning is carried out. After then we represent why only the

subset of relationship is selected for pruning purpose. The
next section describes the weight assignment approach i.e
assigning weight to the relationships of ontology. Now,
finally Ontology pruning is introduced.

 Our goal is to cut down the relationships which are less
desirable for representing the knowledge base of ontology.
Ontology Pruning is carried out in a way such that minimum
information loss is suffered. There is no particular algorithm
used for implementing the concept of pruning but a simple
and efficient heuristic is adapted. Ontology web language is
a semantic web language. All the ontologies used for various
applications in semantic web are developed using Ontology
web language. The data set used for implementation purpose
is expressed in Ontology web language. Jena API is used to
implement the concept of cutting down the relationships of
ontology.

2.1Weight assignment approach

In this paper discrete weights are assigned to relationships
taken into consideration for pruning. This becomes the core
of weight assignment approach. From pool of relationships,
only the subset of relationship is chosen for implementation.
The Reason for choosing only subset of relationships for
pruning will be discussed below.

2.1.1Selection of subset of relationship
We assign discrete integer values called weights to different
relationships of ontology. The reason behind assigning
different values to relationships is that different relationships
have different semantics and show different aspects of the
ontology. We would like to differentiate between these
relationships and their importance in introducing domain
concept of ontology. This does not mean that a relationship
is more valuable or of more importance compared to other
but it sometimes means that the relationships with higher
weights have higher existential precedence in comparison
with other. Here existential precedence means that removing
the relationships with higher weight can reflect to the loss of
information in knowledge base of domain concept. Hence
existence of such relationships should be mandatory to keep
the concept represented by ontology intact. Therefore the
weights can be changed for different application and/or in
different context.

There exist many Relationships between nodes for
describing a concept using Web Ontology Language. Table I
[3] represent list of relationships considered in this paper.
Selection of only few relationships is made for implementing
Ontology Pruning. There are mainly two reasons behind the
selection criteria of relationships. First reason is that
Ontology is a very descriptive structure and can express
many relationships within it whereas RDF(S) which forms a
base of Ontology is not Scalable with many relationships of
Ontology. Hence in order to keep the Proposed Algorithm of
this paper back compatible with RDF(S) upto some extent
only subset of relationship is selected for pruning Ontology.
This tells that assigning weights to all different relationships
of ontologies is not preferable. Second reason is the
Existential precedence of relationships in ontology. All
relationships introduced in ontologies are bonded with

Paper ID: 020132193 1624

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

different semantics within it. Some relation may reflect
higher semantic than other. In this paper relationships with
optimal existential precedence are selected. After discussion
of selection criteria of relationship subset the weight
assigned to those relationships for implementation is
described in the below table. The weights presented in are
the weights of the previous research paper [3].As we can see
from the above table that different relations are assigned
different weights depending on their semantics.
Understanding in more detailed manner we can say that a
subpropertyOf relationship is a property which is declared to
be sub property of this property. If p is a sub property of q
then for instances A and B, if A p B is true then we can infer
that A q B is also true. This tells that both p and q are related
with each other and so it is assigned value 10.

Table 1: List of Relationships and Weights
Property Weight Property Weight

subPropertyOf 10 Domain 5
Functional Property 5 Range 5

inverseFunctional Property 5 Comment 0.2
InverseOf 20 seeAlso 0.2

Disjointwith 0-10 isDefinedBy 0.2
ComplementOf 10 Label 0.2

If disjointwith relation exists between high-level concept, the
weight is considered to be zero because they are really
disjoint, however if it occurs this elation occurs at low level
concept then its weight is 10 because concepts disjoint at
lower level may be dependent on each-other at high level.
Next if two concepts have complement relationship, it means
they are strongly connected with each other. we can say that
it has subclass relationship at first where super class of
concept forms the universal set and after then we can say
that they have complement relationship. InverseOf Property
strongly relates two properties and hence its weight is high.
For Object property, when the property have inverse
functional attribute it implies that it introduces unique value.
Domain is a built-in property that links instances of class
rdf:property to class description. An rdfs:domain axiom
asserts that the subjects of such property statements must
belong to the class extension of the indicated class
description. Range is a built-in property that links instances
of class rdf:property to class description or data range. An
rdfs:range axiom asserts that the values of this property must
belong to the class extension of the class description or to
data values in the specified data range. Thus both Domain
and range is assigned equal weight that is 5. All the
annotation properties are given 0.2 as weight.

3. Proposed Algorithm

The step by step procedure of how Ontology pruning is
carried out is described in this section. The small brief of
steps mentioned in algorithm is: At initial phase ontology
described in web ontology language is taken as input. All the
properties of ontology taken as input is retrieved by calling
AllOntProperties() function. After then weights are assigned
to the properties as per defined in Table 1. A threshold value
is set using which pruning is carried out. All the properties
having weight value more than the threshold value are kept
intact and other properties are eliminated. Here the threshold

value can be changed for different application and/or in
different context depending on complexity of ontology. The
resultant output obtained after applying this algorithm to the
input file is the final pruned ontology. This algorithm is in a
way fast and easy to implement Ontology Pruning.

Steps of Algorithm
 Take ontology to be pruned as input
 Read the owl file
 List out the values of owl properties using

ListAllOntProperty() function
 Retrieve the names of the properties corresponding to a

particular value
 Assign weights to the property names retrieved
 Check If the weight assigned is less than the threshold

limit
 If the weight assigned is less than the threshold limit then

prune the relation along with the node associated with it
 Else if the weight assigned is more than the threshold limit

then the node and its relation is kept intact.
 Retrieve the pruned ontology file
 Analyze and the loss of knowledge in pruned ontology
 Note down the load time taken to load the pruned ontology
 Give out conclusion based on the analysis results.

4. Analysis

4.1 Data sets

For implementing our approach to Ontology pruning we
have chosen ontologies that belong to three discrete
domains. They are pizza ontology [17] that belongs to edible
item domain, MDC (Medical diagnostic categories) ontology
[14] that belongs to human health care domain and PP (Plant
Protection) ontology [17] that belongs to Botany domain.
The reason behind choosing ontologies of three discrete
domains is to reveal that algorithm is applicable to
ontologies of various domains written in web ontology
language. It reveals that our Algorithm is scalable for
ontologies that belong to various domains.

4.2 Experimental measures

The last three steps of the algorithm mentioned above will be
discussed in this section. A Reasoner [16] is a software
application which can infer logical consequences from a set
of asserted facts or axioms. The inference rules are defined
by means of ontology language called description logic.
Working of an individual Reasoner depends on the
description logic expressivity it uses and algorithm it
implements. In general reasoning tasks for OWL includes
tasks that allow drawing new conclusions about the
knowledge base and performing consistency checks over it.
Reasoning over few ontologies of anatomy domain [10] and
healthcare domain [10] reflected that for very large and
complex ontologies classification time [10] taken by
different Reasoners is too high. Classification Time taken by
few Reasoners in some cases extends the threshold limit and
suffers from time outs. Thus we came to one assessment that
removing away the semantically less desirable parts of the
ontology may help out in reducing the complexity of

Paper ID: 020132193 1625

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ontologies and in-turn improving the classification
performance. In this way we derived to a stage that ontology
pruning is crucial for enhancing the usage of ontologies at
practical level. Now we will show how the algorithm
adapted in this paper proved beneicial for reducing the
complexity of ontology. The below tables shows the changes
reflected in ontology after applying the proposed algorithm
over it. The table below shows the reduction in number of
axioms in ontology after pruning it compared to the original
ontology.

Table 2: Reduction in number of Axioms
No. of Axioms in Original

File
No. of Axioms in

Pruned File
Pizza.owl 918 800
MDC.owl 4694 3903

PP.owl 2625 2600

Where, MDC stands for Medical Diagnostic Categories
Ontology PP stands for Plant Protection Ontology.

After loading pruned Ontologies over different Reasoners in
protégé we observed that the classification time taken by
Reasoners is also reduced to some extent.

Table 3: Reduction in Classification Time (in sec) of Pruned Ontologies
 Pizza.owl Mdc.owl PP.owl

CT of Original
File

CT of
Pruned File

CT of
Original File

CT of Pruned
File

CT of Original File CT of Pruned File

Fact++ 0.212 0.181 0.077 0.070 Inconsistent Ontology Inconsistent Ontology
Hermit 0.682 0.680 0.230 0.225 Inconsistent Ontology Inconsistent Ontology
Pellet 3.232 2.048 0.156 0.121 Inconsistent Ontology Inconsistent Ontology

Pellet Incremental 1.650 2.712 0.245 0.242 Inconsistent Ontology Inconsistent Ontology
Racer Pro 4.686 3.452 4.994 3.651 Inconsistent Ontology Inconsistent Ontology

The Table 3 gives out the comparison of classification time
taken by included Reasoners to classify original ontology
and pruned ontology which is obtained after applying the
proposed algorithm over it.

The experiment measured only classification time and no
loading time or pre processing time. Empirical measures of
Classification Time noted in the above table may vary for
other ontologies and also in different context. Adding further
we tried applying our proposed algorithm across an ontology
which was in-consistent. We found successful application of
algorithm to prune down the less desirable parts of the
ontology. Those ontologies which were found in-consistent
by Reasoners remains in-consistent even after applying this
fine heuristic of ontology pruning. From Table 2 and Table 3
we can analyse that PP Ontology though being inconsistent
ontology, successful pruning is carried out and reduction in
number of axioms is observed. An Ontology when given as
input to any Reasoner is successfully classified by Reasoner
only if ontology is consistent else Reasoners throws the
message that the given input ontology is not consistent.

 Other then analysing Classification Time taken by
Reasoners, another main parameter that needs to be observed
is Information Loss suffered by knowledge base. Examining
various pruned Ontologies it was found that there was
ideally very negligible loss of information from knowledge
base. Metadata information’s like comments, labels and
other such information is removed away from ontology at
the time of pruning. Besides bearing Information loss, the
semantics of Ontologies were preserved.

4.3 Experimental Results

In this section we report describing the full results of the
experiments graphically. Our tests were performed on a
Windows 7 Operating system. We used Protégé 4.3 tool for
loading ontologies and measuring classification time taken

by Reasoners. List of the Reasoners used for experimental
purpose includes Fact++, Hermit, Pellet, Pellet Incremental
and Racer Pro. Implementation of proposed Algorithm is
carried out using Jena API integrated with Eclipse. Jena [12]
is an open source Semantic Web framework for Java. It
provides an API to extract data from and write to RDF/OWL
graphs. Jena has object classes to represent graphs,
resources, properties and literals. Executable jar files of Jena
API are integrated with eclipse and then used for developing
semantic applications. Representing Table 3 graphically we
will obtain the graphs drawn below.

Figure 1: Classification time taken by Reasoners to Classify
Pizza.owl file and MDC.owl file

From the graph of Classification time Taken by Reasoners
for both owl files, it can be observed that there is favourable
decrease in Classification Time by mostly all Reasoners.
Further analysing the graphs we came to an observation that
Reasoner named as Pellet Incremental shows increase in
Classification time required to classify pizza.owl file. Apart
from these Ontologies we tried Examining performance of
our proposed algorithm across various other Ontologies and
we found that in most cases reduction in classification time
is observed. This reduction of Classification Time comes at

Paper ID: 020132193 1626

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

glance because of reduction in number of axioms in
ontology. Inspite of decrease in number of axioms, the
semantic of ontology is conserved.

5. Conclusion

Semantic web is the active field of research in today’s Era.
This paper contributes to provide semantic web with quality
ontologies by removing multiple less desirable relationships
in the ontology. The algorithm proposed in this paper
implements Ontology Pruning using weight assignment
approach. All those relationships with weight less than the
threshold limit become subject to pruning and are removed
away from ontology. Analysing ontologies using the above
mentioned approach it is concluded that there is acceptable
reduction in classification time taken by all included
Reasoners for classifying pruned ontologies. This happens
due to reduction in number of axioms

when applying pruning algorithm across the original
ontology. Even the in-consistent Ontology when given as
input to the algorithm results to successful reduction in
number of axioms i.e successful pruning is carried out. The
pruned ontology obtained for inconsistent ontology as input
is also found to be in-consistent.

 Ontology plays a vital role in Semantic web as it represents
knowledge as a concept within the domain which uses
shared vocabulary to denote the properties and inter-
relationships of those concepts. Representation of Domain
concept in structural way forms the basis of Ontology.
Besides examining classification time taken by Reasoners to
classify pruned ontology, another important parameter that
needs to be observed is Information Loss suffered by
knowledge base. From the analysis carried out in above
section, we concluded that there is very negligible loss of
information from knowledge base. Loss of less desirable
metadata information is introduced. Besides observing this
loss, we came to a conclusion that the core semantics of
ontologies were preserved.

In future work, we plan to evaluate our experiments with
other evaluation methods and other datasets to determine the
efficiency of our algorithm. Furthermore, we would like to
further investigate the weight of edges to improve our
approach.

References

[1] Description Logic Handbook:
http://www.cambridge.org/us/academic/subjects/compu
ter-science/programming-languages-and-applied-
logic/description-logic-handbook-theory
implementation -and-applications ? format=HB

[2] Ontology Learning Handbook authored by alexandar
Maedche,Springer-2002.

[3] Modularization of Graph-Structured Ontology with
Semantic Similarity, Soudabeh Ghafourian, Amin
Rezaeian, and Mahmoud Naghibzadeh Department of
Computer Engineering, Ferdowsi University of
Mashhad, Mashhad, Iran.

[4] Ontology Matching and Schema Integration using Node
Ranking, Asankhaya Sharma Department of Computer
Science and Engineering National Institute of
TechnologyWarangal, AP, India. Dr. D.V.L.N.
Somayajulu Department of Computer Science and
Engineering National Institute of TechnologyWarangal
Warangal, AP, India

[5] Matching Large Ontologies Based on Reduction
Anchors. Peng Wang, Yuming Zhou , Baowen Xu
School of Computer Science and Engineering,
Southeast University, China State Key Laboratory for
Novel Software Technology, Nanjing University,
China.

[6] Comparison of Reasoners for large Ontologies in the
OWL 2 EL Profile[Editor(s): Bernardo Cuenca Grau,
Oxford University, UK] 2011 –IOS Press.

[7] Racer: A Core Inference Engine for the Semantic Web
Volker Haarslev† and Ralf Moller Concordia
University, Montreal, Canada University of Applied
Sciences,Wedal Germany.

[8] F-OWL: an Inference Engine for the Semantic Web 1
Youyong Zou, Tim Finin and Harry Chen Computer
Science and Electrical Engineering University of
Maryland, Baltimore County 1000 Hilltop Circle,
Baltimore

[9] Pellet: A Practical OWL-DL Reasoner Evren Sirin a ,
Bijan Parsia a , Bernardo Cuenca Grau a,b , Aditya
Kalyanpur a , Yarden Katz a , a University of
Maryland, MIND Lab, 8400 Baltimore Ave, College
Park MD 20742, USA, Departament de Informatica,
Universidad de Valencia Av. Vicente Andres Estelles,
Valencia, SPAIN.

[10] Comaparative Analysis of Inference Engines for
Semantic web, Kavita Pandya and Chirag Pandya
Department of Computer Engineering, Gandhinagar,
INDIA.

[11] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC316039
6/

[12] http://www.hpl.hp.co.uk/people/bwm/rdf/jena/downloa
d.htm

[13] http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/

[14] http://bioportal.bioontology.org/ontologies
[15] www.w3.org/2005/Incubator/mmsem/XGR-image-

annotation/
[16] http://www.cs.man.ac.uk/~sattler/reasoners.html
[17] http://protegewiki.stanford.edu/wiki/Protege_Ontology

_Library
[18] http://protege.stanford.edu/download/protege/4.3/install

anywhere/Web_Installers/

Paper ID: 020132193 1627

