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Abstract: The present communication explores the unsteady boundary layer flow on a porous stretching sheet. The thermal 
diffusivity and viscosity are assumed to vary as linear function of temperature. Using the stream function, the governing partial 
differential equations are converted into ordinary differential equations. The obtained boundary value problem is converted into 
equivalent initial value problem using continuous genetic algorithm and solved by Runge-Kutta Fehlberg method. To carry out 
analysis the results are depicted in the form of figures.  
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1. Introduction  
 
The study of an incompressible viscous fluid flow over a 
stretching surface through porous media is a classical 
problem in fluid dynamics. It has received enormous 
research interest over the last few decades due to its 
extensive and important applications in various geophysical 
and industrial processes. Some of its remarkable applications 
include creation of polymers of fixed cross-sectional 
profiles, aerodynamics shaping of plastic sheet by forcing 
through die and cooling of metallic and glass plates. Other 
applications can be in movement of biological fluids and in 
food processing industry. Due to its applications in lots of 
areas it has attracted many researchers towards it in recent 
years. 
 
The steady, viscous and incompressible two-dimensional 
flow of a Newtonian fluid was first of all studied by Crane 
[1] where he has applied uniform stress on an elastic flat 
sheet with velocity varying linearly with the distance from a 
fixed point in its own plane. The commendable work of 
Crane was later extended by various researchers to explore 
various aspects of the flow and heat transfer occurring in an 
infinite domain of the fluid surrounding the stretching sheet. 
The work carried out on fluid includes both at rest and 
moving with some velocity. Mahapatra and Gupta [2] 
reported that a boundary layer is formed when the free 
stream velocity exceeds stretching velocity while studying 
effect of free stream velocity on stagnation-point flow 
towards a stretching surface. The orthogonal and oblique 
flow along with porosity and radiation effect on a stretching 
sheet was studied by Singh et al. [3, 4] respectively.  
 
There are many situations when due to sudden stretching of 
a sheet the flow and heat transfer become unsteady. Pop and 
Na [5] investigated the unsteady flow past a wall and found 
that in due course of time the unsteady flow would approach 
the steady flow. Elbashbeshy and Bazid [6] reported 
similarity solution for the heat transfer of an unsteady 
boundary layer flow over stretching sheet and concluded that 
unsteadiness parameter is inversely proportional to thermal 
boundary layer thickness and momentum boundary layer 

thickness. Ishak et al. [7] investigated boundary layer flow 
over a continuous stretching permeable surface and reported 
that unsteadiness parameter is directly proportional to the 
heat transfer rate at the surface. 
 
Gary et. al [8] and Mehta AND sood [9] explained that with 
variation in temperature, the physical properties of fluid 
changes. The decrease in temperature will make a local 
decrease in the transport phenomena by increasing the 
viscosity across the momentum boundary layer and as a 
result the rate of heat transfer at the wall is also affected. So 
the viscosity variation for incompressible fluids must be 
necessarily taken into consideration. The variable viscosity 
along with the application of MHD on boundary layer was 
explained by Mukhopadhyay et al [10].  
 
The present work deals with unsteady fluid flow and heat 
transfer over a stretching sheet in presence of wall suction. 
Fluid viscosity and thermal diffusivity are taken as a linear 
function of temperature. Using the Similarity variable and 
similarity solutions ordinary differential equations 
corresponding to momentum and energy equations are 
derived. These equations are further solved numerically 
using genetic algorithm. The effects of various parameters 
(viz. variable thermal diffusivity, temperature dependent 
fluid viscosity, unsteadiness and suction) on velocity and 
temperature fields are explored and analysed with the help 
of graphs. 
 
2. Formulation of Problem 
 
The mathematical model considered here consists of a 
viscous, incompressible, unsteady flow of a fluid flowing 
past a heated stretching sheet. Fluid is considered in the 
presence of thermal radiation effect. The fluid occupies the 
upper half plane i.e. 0>y . The sheet has uniform 

temperature ∞T  and moving with non-uniform velocity
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with dimension (time)-1, c  is the initial stretching rate and
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α−1
is the effective stretching rate which is increasing 

with time. The temperature of the sheet is different from that 
of the ambient medium. The fluid viscosity is assumed to 
vary with temperature while the other fluid properties are 
assumed constants. 
  
The governing equations of continuity, momentum and 
energy under above assumptions are  
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where u  and v  are velocity components along x  and y  
axis respectively, � is the temperature, κ  is the coefficient 
of thermal diffusivity (dependent on temperature), pc  is 

the specific heat, ρ  is the fluid density (assumed constant), 
µ  is the coefficient of fluid viscosity 
(dependent on temperature), k is the permeability of the 
porous medium. 
 
Boundary conditions for the given model are: 

)(),,( twvvtxUu ==  and 0),( == yattxwTT      (4)  

0→u  and ∞→∞→ yasTT                 (5) 

 where 
t

ovtwv
α−

−=
1

1
)( is the velocity of suction

)0( >ov at the wall, of the fluid, 
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+∞= is the wall temperature, 

where 
ν

ux
x =Re  is the local Reynolds number based on the 

stretching velocity oTU ,  is a reference temperature such 

that wToT ≤≤0  and ν  is the kinematic viscosity of the 

ambient fluid. The expression for ),(twv  ),(),,( txUtxwT

and )(tov are valid only for time 1−< αt unless α become 
zero. Introducing the stream function ),( yxψ  as defined by 
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The temperature dependant fluid viscosity is given by- 

)([* TTba w −+= µµ ]                           (6) 

where *µ  is the constant value of the coefficient of viscosity 
far away from the sheet and a, b are constants with � � 0. 
We have used viscosity temperature relation bTa −=µ  

which is in perfect harmony with the relation aTe−=µ  

when second and higher order terms neglected in the 
expansions. The variation of thermal diffusivity with the 
dimensionless temperature is written as  

]1[* βθκκ +=                                (7)  
where β  is a thermal diffusivity parameter which depends 
on the nature of the fluid, *κ is the value of thermal 
diffusivity at the temperature Tw. 

 
With the help of above relations the governing equations (2) 
and (3) finally reduces to 
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where )(
c

M α=  is the unsteadiness parameter, 

)( ∞−= TTbA w ] is the temperature dependent viscosity 
parameter. 
The corresponding boundary conditions then reduces to: 

1)0(',)0( == fsf  and 01)0( == ηθ at  
,0)(' →∞f  and ∞→→∞ ηθ as0)(           (10)  

where is rP Prandtl number = )( *

κ
µ

pc
 and S corresponds 

to the suction. 
 
3. Results and Discussion 
 
The governing boundary layer equations (8) and (9) 
subjected to the boundary conditions (10) were solved 
numerically by Runge-Kutta Fehlberg with the help of 
genetic algorithm. Different values of thermal diffusivity 
parameter β , unsteadiness parameter M , viscosity 
variation parameter A , were taken for numerical simulation. 
Numerical results were depicted graphically. 

 
Figure 1: Variation of unsteadiness parameter with � on 

fluid velocity. 
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Figure 2: Variation of unsteadiness parameter with � on 

dimensionless temperature. 
 

Figure 1 represents variation of velocity profile of the fluid 
with unsteadiness parameter. It is observed that with the 
increase in unsteadiness parameter �, the fluid velocity first 
decreases and then after certain value of � it starts 
increasing. We notice that a crossing over point appears in 
the figure. This is a special point, where all the velocity 
curves cross each other i.e., velocity profile exhibit different 
behavior before and after this point. This is contrary to the 
result from the paper El-Aziz (2009), where the flow is 
without any such point for all values of � considered. 
Temperature is found to decrease with increasing 
unsteadiness parameter as shown in Figure 2. We also notice 
that impact of unsteadiness parameter on temperature profile 
is more pronounced than on the velocity profile. 

 
 Figure 3: Variation of viscosity variation parameter with � 

on fluid velocity. 

 
Figure 4: Variation of viscosity variation parameter with � 

on dimesionless temperature. 

Figure 3 and 4 shows variation of viscosity variation 
parameter. They show that as the fluid viscosity variation 
parameter increases, the fluid velocity goes on increasing. 
This happens at all the places except near the wall. As the 
value of A increases the temperature decreases so as a result 
the thermal boundary layer decreases as well as the 
boundary layer thickness increases. 
 
From the above discussion we see that both unsteadiness 
parameter and viscosity variation parameter affects the 
velocity and temperature profiles. The fluid velocity is 
inversely proportional to unsteadiness parameter and directly 
proportional to viscosity variation parameter. These two 
opposing effects will shows that as M increases the fluid 
velocity decreases and as A increases the fluid velocity 
decreases. From the graphs of velocity and temperature 
profile one can conclude that up to the crossing over point 
the unsteadiness parameter dominates and after crossing 
over point viscosity variation parameter dominates. 
 
From figure 5 and 6 show one can see that as the value of 
Prandtl number increases the fluid velocity goes on 
increasing and the temperature decreases. 

 
 Figure 5: Variation of Prandtl number parameter with � on 

fluid velocity. 
  

 
Figure 6: Variation of Prandtl number parameter with � on 

dimesionless temperature. 
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Figure 7: Variation of thermal diffusivity parameter with � 

on fluid velocity. 
 

 
Figure 8: Variation of thermal diffusivity parameter with � 

on dimesionless temperature. 
 
Figure 7 and 8 shows the velocity and temperature profiles 
with the variation of thermal diffusivity parameter. Figure 1 
shows that as the value of thermal diffusivity parameter 
increases, the fluid velocity goes on increasing and also an 
increase is shown in the temperature of temperature profile 
as shown in figure 2. The reason behind that is that due to 
increase in thermal diffusivity parameter, the thermal 
boundary gets thickened.  
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