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Abstract: We prove that the Weight Constrained Travelling Salesman Problem is NP- Complete by polynomially transforming the 0-1 
Knapsack Problem to it and vice-versa. We present a pseudo-polynomial time algorithm for computing a weight constrained minimum 
cost Hamilton cycle in a Halin graph and then present a fully polynomial time approximation scheme for this NP-hard problem. 
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1. Introduction 
 
Combinatorial optimization problems form a central object of 
study in operation research. Unfortunately, as for most of 
these problems the underlying decision problems are NP-
complete, there is very little hope of finding feasible 
algorithm that produce optimal solutions (unless, P=NP). 
Research interest has therefore shifted from hunting after 
optimal solutions, to directions in which near optimal 
solutions were expected to be found. One approach for 
attacking the combinatorial optimization problems is using 
approximation algorithms that produce not optimal solutions, 
but solutions that are guaranteed to be a fixed percentage 
away from the actual optimum. 
 
The classical travelling sales man problem associates an edge 
cost c ≥ 0 with each edge e ∈ E and asks for a minimum cost 
tour. We refer the readers to the books by  Reinelt [8] and 
Lawer et.el. [11] for the details of TSP. It is well known that 
TSP is NP-hard Lawer et.el. [11]. Also researchers have 
identified various special cases which can be solved in 
polynomial time [1], [9], [10]. 
 
In this paper we consider the weight constrained travelling 
salesman problem (WCTSP) i.e. each edge has a weight 
besides cost, and we want to find a minimum cost hamilton 
tour with a total weight no more than a given weight constant 
W. We call this problem the weight constrained travelling 
salesman problem (WCTSP). We consider a special case of 
WCTSP, in which the underlying graph is a Halin graph. 
Cornuejols et.el. [1] have given O(n) time algorithm for 
solving TSP on a Halin graph. 
 
1.1 Halin graph 
 
A Halin graph H0 is obtained by embedding a tree T0 having 
no nodes of degree 2 in the plane, and then adding a cycle C0 
to join the leaves of H0 in such a way that the resulting graph 
is planar (see fig 1). We write H0 = T0 UC0.  Halin graphs are 
nontrivial generalizations of tree and ring networks, since a 
Halin graph is obtained by connecting the leaves of a tree by 
a cycle. These graphs are edge minimal 3-connected, and in 
general have a large number of Hamilton cycles. In fact, 
Halin graphs are 1-hamiltonian, i.e. they have Hamilton 

cycles and if any node is deleted, the resulting graph still has 
a Hamilton cycle. 

 
Figure 1: A Halin graph 

 
Let H0 = T0 UC0 be a Halin graph. If T0 is a star i.e., a single 
node v connected to all other nodes, then H is called a wheel. 
We call v centre of the wheel. Now suppose H0 has at least 
two nonleaves. Then the set of leaves of T adjacent to w, 
which we denote by C(w), consecutive subsequence of cycle 
C. We call the subgraph of H induced by {w} U C(w) a fan 
and w as the centre of the fan. Fig 2 is a fan with centre v. 

 
Figure 2: A wheel with centre v 

 
1.2 WCTSP in Halin Graph 
 
Given a Halin graph H = (V, E) and an integer weight M ≥ 0, 
we are interested in finding a minimum cost Hamilton cycle 
HC of H subject to the constraint that w(HC) ≤ M. We call 
such a tour a Weight Constrained Minimum Cost Hamilton 
cycle, and the corresponding problem Weight Constrained 
Travelling Salesman Problem (WCTSP). 
 
Given ( )H V,E=  is a Halin graph, { },ij ijc w  set of cost and 
weight respectively associated with edges Îij E . Below we 
give a linear description of the WCTSP on a Halin graph. 

min
Î

å ij ij
ij E

c x     such that     
Î

£å ij ij
ij E

w x M  and the 

constraints 
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where δ(i) is the set of edges incident on node i. 
 
Theorem 1.1. The WCTSP in a Halin graph is NP-
Complete. 
Proof. We prove the theorem by showing that an instance of 
a 0-1 knapsack problem can be transformed to a WCTSP and 
vice-versa. Suppose we are given the instance of the 0-1 
Knapsack Problem as: 
Given integers c1, c2, ..., cn, w1, w2, ..., wn ; K 

1
max

=å n
j jj

c x  

subject to   
1=

£å n
j jj

w x K    xj = 0, 1    " j =1,2,..n 

We polynomially transform the 0-1 Knapsack Problem to 
WCTSP. We construct the corresponding Halin graph H = 
(V,E) as follows: 
 
Corresponding to each element i ∈ {1, 2, ..., n}, construct the 
fan Fi with leaf nodes i1, i2, i3 and vi as its centre. Let v0 be 
the node connecting all fans, i.e. (v0, vi) Î " ÎE i  

{ }1,2,..., .n  

Thus { } { }1 2 3 01
, , ,n

ii
V i i i v v

=
= UU     and  

{ }1 2 2 3 1 2 3 0[ , ],[ , ],[ , ],[ , ],[ , ],[ , ]i i i iE i i i i v i v i v i v v=     

for i = { }1,2,...,n . 
 
Define weights and costs for edges in E as follows: 

cost[ ]1 2,i i    =  – ci 

weight[ ]1 2,i i   =  wi 

cost[ ]2 3,i i    =  L 

weight[ ]2 3,i i   =  0 
 
All the remaining edges have cost zero and weight zero. 
R.H.S. number of the weight constraint is K, and L is a large 
number. This completes the construction of the Halin graph, 
Fig. 3 and thus describing the corresponding weight 
constrained problem on H. 

 
Figure 3: A WCTSP instance constructed from a 0 – 1 

Knapsack problem 

 
Suppose that the constructed instance of WCTSP has an 
optimal tour *T . Let P =  

[ ]{ }2: , *Îij j j T  and we write *T  = U U UA B C D  where 

[ ]{ }1 2 2 3, , ,j j
j P

A j j j v v j
Î

é ù é ù= ê ú ê úë û ë ûU UU  

[ ]{ }2 3 1 2, , ,
Ï

é ù é ù= ê ú ê úë û ë ûU UU j j
j P

B j j j v v j    and 

[ ] [ ] [ ] [ ] [ ] [ ]2 3 3 0 0 1 1 1 2 3, , , , ,1 1 ,1n nC n n n v v v v v v= U U U U UU  

     [ ]1 21 ,1U  

( )1
3 11
, 1-

=
é ù= +ê úë ûUn

j
D j j   

Cost of *T , 

( ) ( )2*

Î

= - + + -å j
j P

C T c n P L      (*) 

Weight of *T , 

( )*

Î

= £å j
j P

W T w K  

Define the solution X = { }jx  for the knapsack problem 
as: 

1, for
0, forj

j P
x

j P
ì Îïï= íï Ïïî

        (**) 

This solves the 0-1 knapsack problem with cost 
Î

å j
j P

c  and 

weight 
Î

£å j
j P

w K  

Suppose X is not an optimal solution to the 0-1 knapsack 
problem, then we can get a contradiction. Let { }¢ ¢= jX x  be 
an optimal solution to the knapsack problem with cost greater 

than 
Î

å j
j P

c  and satisfying the weight constraint. ¢X  will 

differ from X in at least two indices { }, 1,2,...Îr s n  such that 

0, 1¢= =r rx x   for Îr P  
1, 0¢= =s sx x   for s PÏ  

Cost of solution ( ),
Î

¢ ¢ = - +å j r s
j P

X C X c c c  and weight 

( )
Î

¢ = - +å j r s
j P

W X w w w  

By assumption, 

j j r s
j P j P

c c c c
∈ ∈

− ≤ − − +∑ ∑  (Since knapsack is maximization 

problem) 
⇒ cs > cr 
Now the corresponding tour *¢= +T T [ ] [ ]{ 1 2 2 3, ,-s s s s  

[ ] [ ]}2 3 1 2, ,+ -r r r r  with cost of ¢T given by 

 ( ) ( )2
Î

¢ = - + - + + -å j r s
j P

C T c c c n P L  

( ) ( )2j
j P

c n P L C T
Î

¢< - + + - =å     since cs > cr 
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This contradicts the optimality of T*. Hence, if solution to 
Weight Constrained TSP is obtained in polynomial time, then 
we shall have solution to 0-1 knapsack problem, also in 
polynomial time. But 0-1 knapsack problem is NP-Complete. 
Thus, Weight Constrained TSP is also in NP-C. 
 
2. A Pseudo Polynomial Time Algorithm for 

WCTSP 
 
In the definition of the Weight Constrained Travelling 
Salesman Problem (WCTSP), the weight and cost of an edge 
are symmetric. We will present a pseudo polynomial time 
algorithm for computing a weight constrained minimum cost 
hamilton cycle and then apply standard technique of scaling 
and rounding to turn the pseudo polynomial time algorithm 
into a PTAS for WCTSP in the next section. 
 
2.1 Fan Contractions 
 
Let G = H0 = T0 U C0 , when no fan contraction has taken 
place in the Halin graph H and let i be a non-leaf of T0 which 
is adjacent to at most one other non-leaf j of T0. If no such j 
exists, H0 is a wheel. Let Γi denote the set of neighbours of i. 
The subgraph Fi of H0 induced by Γi U{i} – {j} is called a 
fan, and vertex i is called the centre of the fan Fi. It is easy to 
verify that every Halin graph has at least two fans. Our 
algorithm is based on the idea of fan contraction.  

 
Figure 4: A Halin graph H0 and its fan contraction H1 

 

A fan contraction of Halin graph H0 = T0 UC0 along the fan 
Fi is as follows: 
 
1) Attach the edges incident to Fi to the vertex i. 
2) Delete vertices in Fi I  C0 from H0 

 
The resultant graph , denoted by H1 (see figure 4), is clearly a 
Halin graph unless H0 is a wheel. If H0 is a wheel, let i be the 
centre and j be leaf node of the wheel. Then {} { }G -Ui i j  is 
a fan consisting of all nodes of the wheel except node j. By 
fan contraction, {} { }G -Ui i j  is contracted to node i and 
thus we get two vertices i and j joined by three parallel edges. 
 
Let Hk = Tk U Ck denote a Halin graph obtained from the 
original graph H0 = T0 U C0 by k fan contractions. Let Fi 
denote a fan of Hk and assume that 1,2,...,r denote the 
vertices in Fi I  Ck (in clockwise order) and node i its centre. 
Note that some of the vertices may represent contracted fans. 
For every s, 1 ≤ s ≤ r, let sf and sg denote the first and last 
vertex (in clockwise order) on C0, respectively, of the fan. 
which has been contracted into s in Hk. If s ∈ C0, then sf = s = 
sg. Let G(s) denote the subgraph of H0 induced by all the 

vertices that have been contracted into s. In case s ∈ C0, G(s) 
= s. 
 
For every s, 1 ≤ s ≤ r and for every W, W = 0, 1,..., M, 
consider the following subgraphs of G(s). We are in 
particular interested in the cost of the subgraphs HPjl(s, W), 
HPjk(s, W), HPkl(s, W) of G(s), where {j, k, l} is a 3-edge 
cut-set for the fan contracted into node ‘s’ in H0. Note: As ‘s’ 
varies, edge j of C0 which is incident on 1f remains the same 
where as edge ’l’ shifts from being incident on 1g to rg and 
‘k’ is the edge connecting i and v0. We define 
 
hpjl(s, W) be the minimum cost of hamilton path passing 
through ‘s’ and containing the edges j and l with weight at 
most W. 
hpjk(s, W) be the minimum cost of hamilton path passing 
through ‘s’ and containing the edges j and k with weight at 
most W.  
hpkl(s, W) be the minimum cost of hamilton path passing 
through ’s’ and containing the edges k and l with weight at 
most W. 
 
2.2 Recurrence Rules 
 
Let ( ), 1 ,£ £iG s s r  denote a subgraph of 0H  induced by 

the vertex i together with the vertices of ( ) ( )1 , 2 ,...,G G  
( )G s . Define HPjli(s, W), HPjki(s, W), HPkli(s, W), in Gi(s) 

in the same manner as their counter-part in G(s), all 
occurrence of sf are replaced by 1f . In fact, Gi(r) = Fi = G(i). 
Now we shall show how to determine hpjl(i, W), hpjk(i, W), 
hpkl(i, W) in a Halin graph Hk = Tk U Ck, provided  
hpjl(1, W), hpjk(1, W), hpkl(1, W) ,..., hpjl(r, W), hpjk(r, W), 
hpkl(r, W) are available by initialization or by previous 
computations. 
First we initialize the variables for each vertex s on the cycle 
C0 of the original Halin graph H0 = T0 U C0, and for every 
W, W = 0, 1 ,..., M, as follows hpjl(s, W) := hpjk(s, W)  
:= hpkl(s, W) := 0 
 
Getting minimum hamiltonian path in a fan computing 
hpjl(s, W) 
Let Fi be a fan with outer nodes 1, 2, ..., r(in clockwise order) 
on C with centre i. Since the hamilton path contains edge j 
and l we have r-1 choices(sub tours) in Fi through which 
hamilton path can traverse. Let these sub paths be denoted by 
T1, T2, ..., Tr −1 where Ts obtained by ejecting the edge es = (s-
1, s) and adding edges (s-1, i) and (i, s). Let w1, w2, ..., wr −1 
denote the corresponding weights of these paths. Let t of 
them satisfy the weight constraint and let them be ordered as 
T1, T2, ..., Tt with increasing cost. Then, hpjl(s, W) = T1. 

 
Figure 5: G(s) and Gi(s) in a Halin graph 

The recurrence rule for hpjli(1, W), hpjki(1, W), hpkli(1, W) 
are as follows: 
hpjli(1, W) = c( j) + c(l) + hpjl(1, W − w(j) − w(l)) 
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hpjki(1, W) = c( j) + c(k) + hpjk(1, W − w( j) − w(k)) 
hpkli(1, W) = c(k) + c(l) + hpkl(1, W − w(k) − w(l)). 
For 2 ≤ s ≤ r, let q = s-1. Suppose that hpjli(q, W), hpjki  
(q, W), hpkli(q, W) and hpjl(s, W), hpjk(s, W), hpkl(s, W) for 
every W, W = 0, 1, ..., M are given. We want to determine 
pjli(s, W), hpjki(s, W), hpkli(s, W). Gi(s) consists of Gi(q), G(s) 
and the edges(qg, sf ) and(i, s). i.e. {j, k, l} becomes cut set of 
G(s) with j = (qg, sf ), k = (i, s) and l = (sg, s + 1f ). 
 

 
Figure 6: The configuration of Gi(s) 

 
We determine hpjli(s, W) in terms of hpjli(q, W) and hpjl(s, 
W). Let (u1, c1) and (u2, c2) be the weight and cost of edges 
(qg, sf) and (i, s) respectively. Let ul and cl be the weight and 
cost of edge l = (sg, s + 1f ). Let HPjli(s, W) be the minimum 
cost hamilton path of Gi(s) with weight at most W. i.e. 
hamilton path HPjli(s, W) contains sub paths from  
Gi(q) and G(s). Thus one of the following three exhaustive 
cases applies to the sub-graph HPjli(s, W). 
 
Case 1: HPjli(s, W) contains edge (qg, sf ) but not (i, s) ; 
Case 2: HPjli(s, W) contains edge (i, s) but not (qg, sf ); 
Case 3: HPjli(s, W) contains edges (qg, sf ) and (i, s); 
 
Here only case (i) is valid for HPjli(s, W). Case (ii) and Case 
(iii) will occur in the last fan reduction, when the centre node 
of the Halin graph is to be accessed. 
 
Case 1: 
It means that HPjli(s, W) contains edge (qg, sf ) and vertices 
qg ,sf but not (i, s). Edge (qg, sf ) connects two parts of  
HPjli(s, W). 
The first part is a sub path in Gi(q) which contains the vertex 
qg. It must be a HPjli(q, W1) for some 0 ≤ W1 ≤ W. 
The second part is sub path in G(s), which contains the vertex 
sf . It must be a HPjl(s, W2) for some W2 ≥ 0, where W1 + W2 
= W − u1 – ul, W1 ≥ 0, W2 ≥ 0. 
Thus hpjli(s, W) is the minimum of the set: 
{c1 + cl + hpjli(q, W1) + hpjl(s, W2) : W1 + W2 = W − u1 − ul ≥ 
0, W1 ≥ 0, W2 ≥ 0} 
The recurrence rules for, hpjki(s, W), hpkli(s, W) can be 
obtained in a similar way. 
 
2.3 Determination of Hamilton cycle 
 
After contraction of Fi, i becomes a vertex on the cycle Ck+1 
of Hk+1 and Gi(r) is equal to G(i) which form a node of Ck+1. 
Consequently for every W, W = 0, 1, ..., M, we get hpjl(i, W) 
= hpjli(r, W), hpjk(i, W) = hpjki(r, W), hpkl(i, W) =  
hpkli(r, W) and this process can be repeated until the graph 

H0 is reduced to a graph Ht consisting of two vertices with i 
and j joined by three parallel edges. Let G(i), G(j) be two 
subgraphs of H0 corresponding to i and j in Ht respectively. 
Let w1, w2, w3 and c1, c2, c3 be weights and costs of three 
edges (if , j), (i, j), (il, j) respectively. For every W, W = 0, 1, 
..., M, let c(HC, W) be the minimum cost hamilton cycle with 
weight no more than W and the corresponding hamilton cycle 
is denoted by HC(W). The configuration of HC(W) must 
contains three cases. 
 
Case 1: (if , j),(i, j) 
Case 2: (if , j),(il, j) 
Case 3: (i, j),(il, j) 
Case 1: we get, c(HC,W) is 
c1 + c2 + hpjki(i, W − w1 − w2) with W − w1 − w2 ≥ 0 
 

 
Figure 7: The configuration of G(i) and G(j) 

 
Case 2: we get, c(HC,W) is 
c1 + c3 + hpjli(i, W − w1 − w3) with W − w1 − w3 ≥ 0 
Case 3: we get, c(HC,W) is 
c2 + c3 + hplki(i, W − w2 − w3) with W − w2 − w3 ≥ 0 
 
Based on above we know that c(HC,W) is the minimum of 
the following numbers and negative weight indicates the 
nonexistence of a weight constrained hamilton cycle. 
 
c1 + c2 + hpjki(i, W − w1 − w2) ; 
c1 + c3 + hpjli(i, W − w1 − w3) ; 
c2 + c3 + hplki(i, W − w2 − w3) ; 

 
2.4 Pseudo Polynomial Time Algorithm 
 
We summarize the method discuss above in the following 
algorithm: 
 
Algorithm 1 Pseudo Polynomial Time Algorithm for 
WCTSP. 
 
Step 1: Let H0 = T0 U C0, M be the bound for the weight. Set 
k := 0, Fi be a fan of Hk with centre i and 1, 2, ..., r be the 
vertices of Fi I  Ck in clockwise order. Define the quantities 
hpjl(s, W), hpjk(s, W), hpkl(s, W) as in the initialization step 
in section 2, for s := 1, 2, ..., r and W := 0, 1,..., M; 
 
Step 2: Use the recurrence rules of section 2 to get hpjli(s, 
W), hpjki(s, W), hpkli(s, W) for s := 1, 2, ..., r and W:= 0, 1, 
..., M; 
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Step 3: Setting hpjl(i, W) = hpjli(r, W), hpjk(i,W) = hpjki(r, 
W), hpkl(i, W) = hpkli(r, W) for W := 0, 1, ..., M when Fi is 
contracted into a vertex i and Hk is transformed into Hk+1. Set 
k := k + 1. If Hk consist of only two vertices with three 
parallel edges, goto step4; Otherwise, take a fan Fi of Hk and 
vertices 1, 2, ..., r of Fi I  Hk in clockwise order and goto 
step2: 
 
Step 4: Find the minimum cost hamilton cycle HC with a 
weight bound W, for every W = 0, 1, 2, ..., M. 
 
Theorem 2.1. Algorithm 1 correctly determines the hamilton 
cycle with a weight no more than a given bound M and a 
negative weight indicating the non-existence of Weight 
Constrained hamilton cycle. Further more the time 
complexity of algorithm1 is O(n(M + 1)2), where n is the 
number of vertices in the graph. 
 
Proof. In order to prove the recurrence rules we simply need 
to list all relevant cases. We prove the rule for hpjl(i, M), and 
the others can be verified in similar a way. 
 
Gi(1) consists of G(1), vertex i and edge (i, 1). Then HPjli(1, 
W) consists of edges j , l and HPjl(1, W − w(j) − w(l)). Thus, 
hpjli(1, W) = c(j) + c(l) + hpjl(1, W − w(j) − w(l)). This prove 
the correctness of definition of hpjli(1, W). 
 
For s ≥ 2, Gi(s) consists of Gi(q), G(s) and edges  
e1 = (ql, sf) and e2 = (i, s). We have to consider the following 
three cases for HPjl(s, W) 
 
1. HPjli(s, W) contains edge e1 but not e2; 
2. HPjli(s, W) contains edge e2 but not e1; 
3. HPjli(s,W) contains edges both e1 and e2; 
 
These three cases exhaust all possible configurations of 
HPjli(s,W) and corresponding three sets used for computing 
hpjli(s, W). 
 
For computing the minimum cost c(HC,W), we simply need 
to exhaust all possibilities of the three edges (if , j),  
(i, j), (il, j). The three cases just correspond to the three 
numbers used for computing c(HC,W). Since there are O(M 
+ 1) choices for each of the numbers W, W1, W2 the update of 
the quantities can be accomplished in O((M + 1)2) times for 
each reduction. There are at most O(n) reductions since the 
number of vertices is n requiring at most n fan contraction . 
This completes the proof of the theorem. 

 
3. A Fully Polynomial Time Approximation 

Scheme (FPTAS) For WCTSP 
 
Algorithm1 in section 2 solves WCTSP in pseudo 
polynomial time. Now to obtain a Fully Polynomial Time 
Approximation Scheme (FPTAS) for WCTSP, using 
standard techniques of scaling and rounding ([6], [3], [4]) for 
the costs. We will use algorithm 1 with costs replaced by the 
weights. Hence corresponding Cost Constrained Travelling 
Salesman Problem(CCTSP) is given as: 

 min
Î

å ij ij
ij E

w x   such that  
Î

£ xå ij ij
ij E

c x  and the constraints  

( )( )

( )

: : 2

: 2 for every 3- edge cut- set of .

ìïïï £ " Îïïïïïïï Î Î d = " Îíïïïïïï Î G = Gïïïîï

å

å

ij

E
ij

ij

x ij E

x R x ij v v V

x ij H

 

Where x is the cost constant. 
Thus, in this section algorithm1 will now find minimum 
weight Hamilton cycle with cost at most K, K = 1, 2, ..., x . 
Let c(HC,W) be the minimum cost hamilton cycle with a 
weight no more than W. Using standard technique of scaling 
and rounding, we can decide, in fully polynomial time, 
whether c(HC,W) > C or c(HC,W) < (1 + Î )C for any 
constant Î  > 0. This technique will play an important role in 
our FPTSP for computing a cost constrained minimum 
weight hamilton cycle in a Halin graph. We describe this 
technique in Algorithm2 as TEST. 
 
Algorithm 2: TEST(C, Î ) 

Step 1: set θ := n
C rÎ

; Let cθ be scaled cost edge function 

such that ( ) ( )q = ´ qc e c e   for e ∈ E and set x = ´ qC ; 
Step 2: Apply Algorithm 1 to CCTSP using the scaled edge 
cost function cθ instead of original cost function c; if the 
weight of the cost constrained hamilton cycle is no more than 
W then 
output YES; 
else 
output NO; 
endif 
 
Theorem 3.1. Let us be given the weight constant W, the 
positive real numbers C and ∫. If TEST ( ),òC  = NO then 

c(HC, W) > C. If TEST ( ),òC  = YES then c(HC, W) < 

( )1 òd+ ´ C . In addition, the worst case time complexity of 

TEST ( ),òC  is 
3

2ò
æ ö÷ç ÷ç ÷ç ÷ç ÷è ø
nO . 

Proof. Let HC be the hamilton cycle in H. Let ( )c HC  = 

( )
Îå e HC

c e  and ( )qc HC  = ( )qÎå e HC
c e . θ and ξ are as 

defined in Algorithm 2. 
 Assume that TEST ( ),òC  = NO, which implies every 
hamilton cycle HC with a cost less than ξ has a weight more 
than W. Conversely we must have hamilton cycle HC with 
weight no more than W having cost greater than ξ. Thus 

( )q > xc HC   i.e. 

( ) ( )
e HC e HC

c e c e CqÎ Î
> x Þ q > qÞå å  

( )
Î

>å e HC
c e C , which implies that ( ), >c HC W C . 

Now assume that TEST ( ),òC  = YES, which implies 
hamiloton cycle HC with a weight no more than W has cost 
less than or equal to ξ i.e. ( )w HC  ≤ W and ( )qc HC  ≤ ξ. 
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Note that ( )qc HC  ≤ ξ implies ( )qÎ
£ xå e HC

c e  and thus 

( ) ( )1 ò< +c HC C  because ( )
Î

q £ q Þ qå e HC
c e C  

( ) ( )1 .ò
Î

£ + qå e HC
c e C  Since òq=C n  and there are n-

edges in HC and c(e)θ is a fraction. That is, 
( ) ( ), 1 ò< +c HC W C . 

The time complexity 
3

2ò
æ ö÷ç ÷ç ÷ç ÷ç ÷è ø
nO  of TEST follows from 

theorem 3, which says that Algorithm 1 has time complexity 

( )( ) ( )( )2 21+ ;O n M O n M . We get from Algorithm 2 

:= ´ qM C  and :
,ò

q = n
C

 so ( )( )
3

2
2ò

æ ö÷ç ÷= ç ÷ç ÷ç ÷è ø
nO n M O  since 

( ) ( )
2 2 3

2 2
2

n n nn M n C n C nθ
    = × = × = =     

     Cò ò ò
. 

We shall use L and U to denote the lower and upper bounds 
on c(HC, W). Our FPTSP starts with efficiently computable 

values of L and U and uses bisection to reduce the ratio U
L

. 

For a Halin graph with n vertices, we have at most 2n-2 
edges. Let c1 < c2 < ... < ck be distinct edge cost values. We 
note that k < 2n − 2. Now we obtain a modified graph Gj by 
changing the weight of the edges as follows : If the edge e is 
more than cj then w(e) = BIG. We can compute a minimum 
weight hamilton cycle in Gj in O(n) time for every j = 1, 2, ..., 
k. Let J = min{j} such that the weight of the minimum 
hamilton cycle in Gj is no more than W. From the definition 
of Gj, no edge with weight BIG can be included in the 
minimum weight hamilton cycle of Gj , unless the weight of 
the tour is more than BIG. We may use cJ as the initial value 
of L and n × cJ as the initial value of U. 
 
Let B be some chosen real number which is greater than 1 + 

∫/3. We will apply bisection to drive the ratio U
L

 down to 

some number below B. Suppose that our lower bound L and 
upper bound U are such that U > L × B > L × ( )1 /3ò+ . Let 

.
1 / 3ò

´=
+

U LC  

If TEST ( ), / 3C ò  = NO, then C is a lower bound for 
c(HC). 

Define [ ]
[ ] [ ]

( )
[ ] [ ]

1 1
1,

1 /3

k k
k k kU LL U U

- -
-´= =

+ ò
 

If TEST ( ), / 3C ò  = YES, then ( )1 /3+ ò  × C is also an upper 
bound for c(HC), i.e. 

[ ] ( )
[ ] [ ]

( )
[ ] [ ]

1 1
11 / 3 ,

1 / 3

k k
k k kU LU L L

- -
-´= + ´ =

+
ò

ò
 

(Case i). TEST ( ), / 3C ò  = NO. 
[ ]

[ ]

[ ] [ ]

( )
[ ]

[ ]

[ ] ( )

1 1 1
1

1 1/ 1
1 /3 1 / 3

k k k k
k

k k

L U L UL
L L

- - -
-

- -

´= = >
+ ´ +ò ò

 

Since [ ] [ ] ( )1 1 1 /3k kU L- -> ´ + ò . 

Thus [ ] [ ]1k kL L -> . Hence [ ]kL  is increasing. 

(Case ii). TEST ( ), / 3C ò  = YES. 
[ ]

[ ] ( )
[ ] [ ]

( )
[ ]

1 1
1

1 1 / 3 /
1 /3

k k k
k

k

U U L U
U

- -
-

-

´= +
+

ò
ò

 

        
[ ] ( )

[ ]

1

1

1 / 3
1

k

k

L
U

-

-

´ +
= <

ò
 

Since [ ] [ ] ( )1 1 1 /3k kU L- -> ´ + ò  

i.e. [ ] [ ]1k kU U -< . Hence [ ]kU  is decreasing. 
Since the value of U is decreasing at each iteration while L is 

fixed and L is increasing while U is fixed, the ratio U
L

 is 

decreasing. Therefore we find ( )1 / 3U
L

´ + ò  decreasing. 

Let us call above the process an iteration. Note that such an 
iteration can be accomplished in fully polynomial time (by 

theorem 4, time complexity of TEST ( ), / 3C ò  is 
3

2
nO

æ ö÷ç ÷ç ÷ç ÷ç ÷è øò
). 

Furthermore, the ratio of the upper bound over the lower 
bound can be reduced to a number below B in polynomial 
number of iterations(polynomial in the input size of the given 

instance and 1
ò

). This analysis leads to a FPTSP scheme 

which is given in algorithm 3. We summarize the discussion 
in theorem 3.2. 
 
Algorithm 3 
 
FPTSP for weight constrained minimum cost Hamilton 
cycle on a Halim graph. 
step 1 
 set ( ) ( ): 1 /3 1 /3 ;B = + ´ +ò ò  set JL c=  and JU n c= ´  

so that U n
L

=  

step 2 
 if U B L£ ´  then go to step -3; 
else 

let : ;
1 / 3
U LC ´=
+ ò

 

if TEST ( ), / 3C ò  = NO, set L = C; 

if TEST ( ), / 3C ò  = YES, set ( )1 /3 ;U C= + ´ò  
go to step-2; 
endif 
step 3 

 set : ; : ;
/ 3

n U
L ò

q = x = q́
´

 

set ( ) ( ):c e c eq
ê ú= q´ë û for every e EÎ ; 

apply algorithm 1 to compute a cost constrained minimum 
weight hamilton cycle using the scaled cost function cq . 
 
Theorem 3.2. Algorithm 3 finds a weight constrained 
hamilton cycle HC such that w(HC) ≤ W and c(HC) ≤ (1 + ∫) 
× c(HC, W). Furthermore the time complexity of Algorithm 3 

is 
3

2
1nO logn log

æ öæ ö÷ç ÷ç ÷´ +ç ÷ç ÷÷ç ÷ç ÷ç ÷è øè øò ò
. 
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Proof. If there is no hamilton cycle satisfying the weight 
constraint, we will find this out during our computation of the 
initial value of L and U. Since U is within ( )21+ ò  of L, 

( ) ( ) ( ), ,c HC W L U c TÎ Þ  is within ( )1+ ò  of U is also 

within ( )1+ ò  of ( ),c HC W . The complexity part is as 
follows. 
 
Step2 in algorithm 3, can be done in O(logn + log1/∫) time 
because we need to carry out till the ratio of upper bound 
over the lower bound can be reduced to a number below B as 
discussed below. 
 

[ ]

[ ] ( )
[ ]

[ ]

1
1/ 2

11 / 3
k k

k k

U U
L L

-

-= + ò  

Taking log on both sides, we get 
[ ]

[ ] ( )
[ ]

[ ]

1

1

1 11 /3
2 2

k k

k k

U Ulog log log
L L

-

-= + +ò  

    ( ) ( )
[ ]

[ ]

2

2

1 1 1 11 / 3 1 / 3
2 2 2 2

k

k

Ulog log log
L

ò ò
-

-

æ ö÷ç ÷ç= + + + + ÷ç ÷÷ççè ø
 

    ( )
[ ]

[ ]

0

2 0

1 1 1 1... 1 / 3
2 2 2 2k k

Ulog log
L

æ ö÷ç= + + + + +÷ç ÷÷çè ø
ò  

    ( )2

1 1 1 1... 1 /3
2 2 2 2k klog logn

æ ö÷ç= + + + + +÷ç ÷÷çè ø
ò  

 11
2k logn£ +  

Since we need 
[ ]

[ ] ( )21 / 3
k

k

U
L

£ + ò  

     ( ) 12 1 /3 1
2klog lognÞ + £ +ò  

This holds if ( ) 11 2 / 3 1
2k lognò+ < +  

     
( )

2
1 / 3

k logn
log

Þ <
+ ò

 

     ( )1 /3k log logn logÞ < - + ò  

     
( )

1
1 / 3

k log logn log log⇒ < +
+ò

 

     1k log logn log log⇒ < +
ò

 

In step 2, TEST ( ), / 3C ò  can be checked in 
3

2

nO
æ ö÷ç ÷ç ÷ç ÷ç ÷è øò

 and 

algorithm 2 is used once in step 3 having time ( )( )21O n x+ . 

Thus the time complexity of algorithm 3 is  

( )
3

2
2

1 1nO logn log n
æ öæ ö ÷ç ÷ç ÷´ + + x+ç ÷ç ÷÷ç ÷ç ÷ç ÷è øè øò ò

 

23

2

1n nO logn log n
C

æ öæ ö æ ö ÷ç ÷ ÷ç ç ÷ç= ´ + +÷ ÷ ÷ç çç ÷ ÷÷ ÷ç ç ÷è ø è øç ÷ç ÷è øò ò ò
 

3

2
1nO logn log

æ öæ ö÷ç ÷ç ÷= ´ +ç ÷ç ÷÷ç ÷ç ÷ç ÷è øè øò ò
. 

 

4. Conclusions 
 
In this paper we have studied the weight constrained 
minimum cost hamilton tour on a very important class of 
graphs - Halin graphs. It is shown that the weight constrained 
travelling salesman problem on Halin graphs is NP-hard. We 
present a pseudo-polynomial time algorithm for computing a 
weight constrained minimum cost Hamilton tour in a Halin 
graph, and also present a fully polynomial time 
approximation scheme for this problem. The more 
challenging problem is the WCTSP on a general graph. It 
would be worth investigating if it is possible to reduce the 
WCTSP on a general graph to WCTSP on a Halin graph and 
obtain good approximate solutions to WCTSP on a general 
graph. 
 
References 
 
[1] G. Cornnuejols, D. Naddef, and W.R. Pulleyblank, 

Halin Graphs and Travelling Salesman Problem, 
Mathematical Programming, Mathematical 
Programming, 26(1983), 287-294. 

[2] G.T.Chen and G.L. Xue, K-pair delay constrained 
minimum cost routing in undirected networks, SODA 
2001-ACM -SIAM Symposium on Discrete Algorithms, 
pp 230-231. 

[3] R. Hussain, Approximation scheme for the restricted 
shortest path problem, Mathematics of Operation 
Research,Vol.17(1992), pp. 36-42. 

[4] O. Ibarra and C. Kim, Fast Approximation Algorithm for 
the Knapsack and the Sum of Subsets Problems, Journal 
of ACM, vol. 22, pp. 463-468. 

[5] G. Chen and R. E. Burkard, Constrained Steiner trees in 
Halin graphs, RAIRO Oper. Res. 37 (2003) 179-194 
DOI: 10.1051/ro:2003020. 

[6] G. Chen and G. Xue, An FPTAS for Weight-Constrained 
Steiner Trees in Series Parallel Graphs, Theoretical 
Computer Science, Volume 304, Number 1, 28 July 
2003, pp. 237-247. 

[7] J.A Wald and C.J. Colbourn, Steiner Trees, Partial 2-
trees and minimum IFI networks, Networks, Vol. 
13(1983), pp. 159-167. 

[8] Reinelt G.(1994), The Travelling Salesman Problem 
Computational Solutions for TSP Applications, Lecture 
notes in Computer Science, Volume page 37-66 
840/1994 Springer-Verlag, Heidelberg, Berlin. 

[9] Gilmore P.C., Lawler E.L., and Shmoys D.B.,(1985)  
Well solved special cases, in  E.L. Lawler et. al. (eds),  
The Travelling Salesman Problem: A guided tour of 
combinatorial optimization, Wiely, N.Y. 

[10] Glover, F., and Punnen, A.P., (1997) The Travelling 
Salesman Problem: New Solvable Cases and Linkage 
with the Development of the Approximation Algorithms, 
Journal of Operational Research Society, 48 (1997) 502-
510. 

[11] Lawler E.L., Lenstra J.K., and  Shmoys D.B.,(1985)  The 
Travelling Salesman Problem, Wiely- Inter science 
Series in Discrete Mathematics, and Sons, New York. 

Author Profile 
 

Paper ID: 020132158 1479



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Dr. Dharmananda Gahir received the Ph.D. 
degree in Mathematics from Indian Institute of 
Technology Kanpur, India in 2009. 

Paper ID: 020132158 1480




