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Abstract: Recently, in exercise physiology, a new model to regulate the central neural effort and fatigue has been proposed. This model 
is called the Central Governor Model (CGM) which theorizes that physical activity is controlled by a regulator in the central nervous 
system, and that the human body works as a complex integrative system. However, CGM is a highly contentious theory which has far
from complete acceptance within the exercise physiology community. Therefore, this paper addresses and analyses some important 
aspects of this model. To analyse the irregular and complex physiological control signals, nonlinear mathematical methods that are
fractal analysis and recurrence analysis were employed in this research to find out respectively the complexity and the characteristics of 
physiological signals during a self-paced time-trial cycling exercise. Results showed that the characteristics and complexity of the 
cardiovascular control system were significantly different from that of the respiratory system. Moreover, different physical body
anthropometrics demonstrated similar complexity and characteristics for each type of physiological control system. This research
attempted to relate the complexity and characteristics of physiological activities with the performance of the cyclists. 
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1. Introduction 

In exercise physiology, the study of complex rhythms arising 
from the peripheral systems (for example, the cardiovascular 
system and the respiratory system) and the central nervous 
system of the human body is important to optimize athletic 
performance while using a suitable type of pacing. Pacing 
plays an important part during athletic competition so that the 
metabolic resources are used effectively to complete the 
physical activity in the minimum time possible, as well as to 
maintain enough metabolic resources to complete that task 
(Ulmer, 1996). Moreover, according to a recently developed 
model named the Central Governor Model (CGM) (St Clair 
Gibson & Noakes, 2004), there is a central regulator that 
paces the peripheral systems during physical activity to reach 
the endpoint of that physical activity without physiological 
system failure. This central governor model of fatigue is a 
complex integrative control model which involves the 
continuous interaction, in a deterministic way, among all the 
physiological, and that of the central systems (Lambert et al, 
2005). Therefore, since very few studies were conducted to 
examine these system control mechanisms and also their 
presence in physiological control systems (Tucker, Bester et 
al, 2006), this research study aims to investigate the 
complexity as well as the characteristics of these control 
mechanisms that regulate homeostasis, and control physical 
activity (St Clair Gibson et al, 2005) so that physical 
performance can be optimised. Couple with that, by 
describing the physiological systems quantitatively, their 
physiological behaviour and their characteristics can be 
predicted which could be used as biological markers to 
improve physical performance. Moreover, recent 
development in mathematical tools, specifically in biology 
and medicine, using nonlinear mathematical methods that are 
recurrence quantitative analysis as well as fractal analysis can 

help in understanding the complex nature of nonlinear control 
mechanisms that regulate the physiological systems (Marwan 
et al., 2007; Marwan, 2008). Therefore, fractal analysis was 
employed here to elucidate the complexity of the 
physiological systems, and recurrence quantitative analysis 
was utilised to find out specific characteristics of the 
physiological control systems in terms of the predictability of 
the physiological control system states, the resilience of a 
particular physiological control system state to change and 
the percentage of occurrence of similar physiological control 
states. Then, these quantitative variables will be related to the 
performance of the cyclists in completing the physical 
exercise task in the minimum time possible. Next subsections 
present the two non-linear methods used in this research to 
determine the complexity and the characteristics of the 
physiological systems. 
 
1.1 Complexity of physiological systems using fractal 
analysis 

Fractal dimension (FD) is a means to measure the complexity 
of a physiological signal whereby the more complex a 
biological signal is, the higher the FD value. For instance, the 
fractal dimension of a single point is 0, a simple curve (line) 
is 1 and a plane is 2. In order to investigate the complexity of 
biological signals, fractal analysis using Higuchi's theorem 
(Higuchi, 1988) was used to determine the fractal dimension 
(See section 2.2.1 for further explanation). By finding the 
complexity of the physiological signal, one will be able to 
correlate it or observe how the complexity of the 
physiological signal affects the performance of the cyclists in 
terms of the finishing times of the cyclists for performing the 
same cycling distance. 
 

Paper ID: 020132106 1264



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 5, May 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY

1.2 Characteristics of physiological systems using 
recurrence analysis 

Biochemical processes may have a distinct recurrent behavior 
that is periodicity (Eckmann et al., 1987). The recurrence of 
states (states are again close after some divergence time), is 
an important property of deterministic as well as dynamical 
systems and is typical for physiological systems. A 
recurrence plot (RP) is a graphical plot that shows for a 
particular moment in time, the times that a phase space 
trajectory visits about the same area in that phase space 
(Findlay 1911; Zbilut et al, 1995). This means it is a graph of 

where variable i represent the horizontal axis 
and the variable j represents the vertical axis, and the vector 

is a phase space trajectory. To investigate the 
characteristics of the complex system control mechanism in 
this research, recurrence analysis was used to locate rhythms 
and patterns in the data (Trulla et al, 1996; Zbilut et al, 1995). 
Then, from this recurrence plot, interested recurrence 
quantitative measures were determined using CRP toolbox 
(Marwan et al, 2007). These RQA measures were recurrence 
rate (RR), the determinism (DET), and the trapping time (TT) 
and these quantitative measures were used to find the 
characteristic features of a particular physiological system. 
These measures are further described in the section 2.2.2. The 
quantitative characteristics of the physiological signals were 
related to the performance of the cyclists, in successfully 
completing the same cycling distance in the minimum time 
possible.

2. Methods 

Ten healthy and club-level male cyclists took part in this 
research study which was approved by the School Ethics 
Committee of School of Life Sciences, University of 
Northumbria at Newcastle, United Kingdom. The mean 
(±SD) age, height and the Body Mass Index (BMI) of these 
cyclists were 32.8 (±7.3) years, 1.77 (±0.06) m and 24.2 
(±1.8) kgm-2 respectively.  

2.1 Study Protocol and Data Collection 

The subjects were required to complete a 20-km cycling bout 
using self pace with instructions to complete that physical 
exercise task in minimum time possible. Physiological data 
that are heart rate (BPM) were recorded using a data 
acquisition system (Powerlab, ADI Instruments, Australia), 
volume of oxygen consumption (V̇O2/L.min-1) was measured 
using an online gas analyser (Cortex Metalyser, Cortex 
Biophysik, Germany). Self pace cycling power outputs were 
recorded at a frequency rate of 11Hz using Velotron 3D 
software which is an interface for the cycle ergometer 
(VelotronPRO, RacerMate Inc, USA) that was used for all 
cyclists’ time trials. The gathered data were then analysed 
using Matlab software platform version R2009b to compute 
the fractal analysis and recurrence analysis, and then the 
SPSS version 20 was used for statistical inferences and 
correlation analysis.  

2.2 Nonlinear Analysis 

First of all, to understand the regulation of physiological 
control systems, it is necessary to differentiate between 
deterministic and stochastic signal as the common 
characteristics of biological activities (Kac and Logan, 1976; 
Nelson, 1985; Priplata et al., 2006). A signal is said to be 
deterministic if its future values can be produced according to 
a set of known parameters and rules (Najim et al., 2004). For 
example, a deterministic cosine signal yd (t) = cos (2πft) can 
be predicted accurately based on the condition that its 
frequency f is known (subscript d stands for deterministic and 
t is time). Two cases are considered to elaborate and 
distinguish between a deterministic outcome and a stochastic 
outcome. For example, if an output signal yr (k) is generated 
by repeatedly tossing an unbiased coin, there is no way to 
predict the kth outcome of the output accurately, even if all the 
output values (head or tail) are known (subscript r in 
stochastic outcome yr (k) stands for random). These represent 
two distinct cases: yd (t) is purely deterministic while yr (k) is 
random or stochastic (Najim et al., 2004). The following 
sections describe the mathematical techniques used in this 
research, and they are known for their current applications in 
biology and medicine. 

2.2.1 Fractal Analysis 

To investigate the complexity of the pacing and physiological 
signals, fractal analysis using Higuchi's theorem was applied 
to the power outputs of the cyclists’ self-paced power outputs 
as well as the physiological data that were heart rate and 
volume of oxygen consumption for this 20-km cycling time-
trial. The fractal dimension (FD) was calculated using 
Higuchi's algorithm (Higuchi, 1988). The Higuchi’s fractal 
dimension, Df, was calculated directly from the real-time raw 
physiological signals, and it is always between 1 and 2 since 
a simple curve has a dimension 1, and a plane has dimension 
equal 2. For instance, as shown in Figure 1, the Koch 
Snowflake has a fractal dimension 1.26 (log10 4 / log10 3) 
where each new segment is scaled by one-third into four new 
pieces laid end to end with two middle pieces leaning toward 
each other between the other two pieces.  

Figure 1: Koch Snowflake is an example of fractal curve and 
has fractal dimension 1.26 

Therefore, from a given physiological data time series X (1), 
X (2)... X(N), the algorithm constructs k new self-similar 
(fractal) time series X (k, m) as: X (k, m) = {X (m), X (m + k),
X (m + 2k), ..., X (m + int [(N-m)/k]·k) } for m = 1, 2, ... k 
where int [.] is an integer function. The length L (m, k) is 
computed for each of the k time series or curves X (k, m), and 
then averaged for all m forming the mean value of the curve 
length L (k), for each k. Then the fractal dimension (FD) is 
determined as the slope of least squares linear best fit from 
the plot of log (L (k)) versus log (1/k). This fractal dimension 
is a means to measure the complexity of a physiological 
signal whereby the more complex a physiological signal is, 
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the higher the FD value. Then, we should see whether this 
has any relationship with physical performance of the cyclists 
in completing this time-trial physical activity. The null 
hypothesis (Ho) was based on that the fractal dimensions of 
the self-paced cycling power outputs and the physiological 
data were similar for all cyclists, while the alternate 
hypothesis (Ha) would signify that the fractal dimensions of 
the self-paced power outputs and the physiological data were 
not similar.  

2.2.2 Recurrence Quantitative Analysis measures 

These RQA measures are obtained from the recurrence plot. 
Firstly, the recurrence rate (RR) is the amount of recurrence 
points in a recurrence plot, and it is the probability that a state 
will occur again in time. In equation 1, R (i, j) represents all 
the recurrence points on the recurrence plot with notation i
representing states in the x-axis and notation j representing 
states in the y-axis, and the variable N represents the total 
number of recurred points that appear in the recurrence plot. 

RR =                    …Equ. 1 

The determinism (DET) of a system is the ratio of the 
recurrence points forming diagonal lines, and these lines 
represent periods of same time evolution of states of that 
system. The DET measure is the percentage of points that 
form diagonal lines in the recurrence plot of minimal length 
lmin. P(l) represents the frequency distribution of the diagonal 
lines of lengths l, and this measure is known as determinism 
which is related to the predictability of the dynamical system. 
For example, white noise has a recurrence plot with 
practically only dots and very few diagonal lines (Webber Jr. 
and Zbilut, 1994), and the deterministic process has a 
recurrence plot with some single dots but many lengthy 
diagonal lines. Determinism is represented by DET as shown 
in the equation below (Equ. 2): 

DET =                     …Equ. 2 

Furthermore, the trapping time (TT (s)) of a dynamical 
system (Equ. 3) is a measure of how long this system remains 
in a specific state or is locked in one state. TT is a measure of 
the average length of the vertical lines of the dynamical 
system (Zbilut et al., 1995). P(v) is the average length of the 
vertical lines, vmin is the minimum length of the vertical lines 
and v is the length of the vertical lines.  

TT =                         …Equ. 3  

The mathematical measures, described before, are commonly 
used in assessing the complexity of the biological signals 
(Webber and Zbilut, 1996), the occurrence of physiological 
events both in time and frequency domain as well as the 
predictability and stability of the physiological systems. The 
null hypothesis (Ho) was based on that the recurrence 
quantitative measures of the self-paced power outputs as well 

as the physiological data were not significant for all cyclists, 
and the alternate hypothesis (Ha) would signify that the 
recurrence quantitative measures of the self-paced power 
outputs as well as the physiological data were statistically 
significant for all cyclists.  

2.3 Statistical analysis 

The collected data as well as the computed variables were 
tested for parametricity using Kolmogorov-Smirnov (K-S) 
test, and then confirmed using z scores of Z-kurtosis (Zkurt)
and Z-skewness (Zskew). Afterwards, One Way Analysis of 
Variance (ANOVA) with repeated measures was used to 
compare the means of these parameters for all cyclists. When 
significant F ratios were found (p < 0.01), the means were 
compared using a Tukey's post-hoc test. Moreover, 
Spearman’s correlation coefficient (r) was used for 
correlation analysis to test any relationships among the 
computed variables that are the fractal measures, recurrence 
quantitative measures and the finishing times of the cyclists.

3. Results 

The Kolmogorov-Smirnov tests showed that all data were 
normally distributed and the Z scores were in fact within the 
±2 acceptable region for normality. Results from fractal 
analysis and recurrence analysis as well as respective 
correlation analysis are described in subsequent sections. 
Results are presented as mean (±standard deviation). 

3.1 Fractal Dimension 

As shown in Figure 2, the mean fractal dimension for the 
power outputs, volume of oxygen consumption (V̇O2) and 
heart rate (HR) for all cyclists were determined to be 1.33 ± 
0.04, 1.15 ± 0.03 and 1.40 ± 0.08 respectively. For each 
physiological variable, it was found that there was no 
significant difference (p > 0.05) for all cyclists, which means 
that the complexity of heart rate was similar for all cyclists 
and the complexity of volume of oxygen consumption was 
similar for all cyclists. However, the fractal dimension for 
volume of oxygen consumption was significantly different 
from the fractal dimension of heart rate for all cyclists (p < 
0.01). This means that the complexity of the cardiovascular 
control system was different from that of the respiratory 
control system. 
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Figure 2: Fractal Dimension for all cyclists with different 
finishing times of cyclists and different rank orders for all 
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physiological variables. The ranking order of the cyclists was 
based on the finishing times of the cyclists for completing 
this cycling time trial physical activity. The one who finished 
this physical activity in least time possible is rank 1st and so 
forth. 

Moreover, correlation analysis showed that there was no 
significant correlation between the fractal dimension of 
power outputs and the finishing times of cyclists as well as 
that of the fractal dimension of volume of oxygen 
consumption and the finishing times of the cyclists (statistical 
probability p = 0.777, non-significant as p > 0.05). In 
addition to that, there was also no significant correlation 
between the fractal dimension of heart rate and finishing 
times (correlation r = + 0.479 and p = 0.162, non-significant 
as p > 0.05) even though there is the presence of low and 
positive correlation which would mean that as the complexity 
of the heart rate data increases, the finishing performance 
times of the cyclists would also increase. 

3.2 Recurrence quantitative measures of physiological 
data 

The recurrence plot depicts the underlying pattern for self 
paced power output of a cyclist who ranked 2nd to show the 
complex pattern which is produced from the 1-dimensional 
self paced power output signal. The left hand side figure (Fig. 
4) represents the one dimensional view of the self paced 
power output signal, and the right hand side figure represents 
the corresponding recurrence plot of the self pace power 
output data. 

Figure 3: The self paced power output signal of a cyclist 
ranked 2nd (left hand side) and its corresponding recurrence 
plot (right hand side) with threshold ε (0.5) and embedding 

dimension m (1). 

In Figure 3, the parameter threshold ε was chosen so that it 
does not exceed 10% of the mean phase space diameter 
(Mindlin and Gilmore, 1992) of the data distribution and also 
to obtain the recurrence structure contained in the signal. The 
other parameter which is the embedding dimension m was
chosen so that the true behavior of the physiological signal is 
not underestimated because the main difference which 
occurred while increasing the dimension of representing a 
time series signal onto a recurrence plot is that the pattern 
becomes less complex.  

The recurrence quantitative analysis (RQA) measures for self 
paced strategy for volume of oxygen consumption 
(V̇O2/L.min-1) were computed, and the mean recurrence rate 
(RR), determinism (DET) and Trapping Time (TT/s) were 
0.09 ± 0.01, 0.29 ± 0.04 and (2.54 ± 0.10) seconds 
respectively. The recurrence analysis measures for heart rate 

activities of the cyclists were as follows: RR was 0.11 ± 0.05, 
DET was 0.89 ± 0.18, TT was (7.0 ± 3.9) seconds. It was 
found that there were significant differences (p < 0.01) 
between the RQA measures of heart rate activities and that of 
volume of oxygen consumption for all the cyclists. However, 
here was no significant difference within each physiological 
control variable for all cyclists. Also, the mean recurrence 
rate, determinism and trapping times for the self paced power 
outputs were 0.074 ± 0.01, 0.69 ± 0.23 and (3.56 ± 1.03) 
seconds respectively. 

Table 1: Summary of the correlation coefficient analysis of 
the recurrence quantitative measures. Symbols V̇O2

represents volume of oxygen consumption (litres/min), PO
means power output, HR represents heart rate, FT means 
finishing times of cyclists, RR represents recurrence rate, 
DET represents determinism and TT means trapping time. 
CCoorrrreellaattiioonn ((||||))
bbeettwweeeenn RRQQAA
mmeeaassuurreess aanndd

FFiinniisshhiinngg TTiimmeess
((FFTT))

CCoorrrreellaattiioonn
ccooeeffffiicciieenntt ((rr))

SSttaattiissttiiccaall
pprroobbaabbiilliittyy

((pp))

SSttaattiissttiiccaall
ssiiggnniiffiiccaannccee

((iiss pp << 00..0055??))

VVOO22__RRRR  ||||  FFTT  -- 00..446677 00..117744 NN..SS ((NNoott
ssiiggnniiffiiccaanntt))

VVOO22__DDEETT |||| FFTT --00..556644 00..004488 SS
VVOO22__TTTT |||| FFTT --00..006677 00..885555 NN..SS
PPOO__RRRR |||| FFTT --00..223366 00..551111 NN..SS
PPOO__DDEETT |||| FFTT --00..446677 00..117744 NN..SS
PPOO__TTTT |||| FFTT --00..445522 00..119955 NN..SS
HHRR__RRRR |||| FFTT --00..112277 00..772266 NN..SS
HHRR__DDEETT |||| FFTT ++00..553399 00..003322 SS
HHRR__TTTT |||| FFTT 00..444422 00..220000 NN..SS

  
Table 1 shows the correlation coefficient values between the 
RQA measures and the finishing times. It was found that 
there was a significant correlation between VO2_DET and FT
(r = -0.564; p = 0.048) as well as HR_DET and FT (r = 
+0.539 and p = 0.032). From these significant results, it was 
observed that there are the presence of either a low positive 
or a low negative correlation with the determinism value of 
heart rate and volume of oxygen consumption respectively. 
This insinuates that as the determinism (or predictability) of 
the heart rate data increases, there is an increase in the 
performance finishing times of the cyclists. However, as the 
determinism (or the predictability) of the volume of oxygen 
consumption data increases, there is a decrease in the 
performance finishing times of the cyclists.  
  
4 Discussions 

To determine the complexity of the pacing strategy for each 
cyclist, fractal dimension was used. It was found that the 
complexity of the self paced power output was similar for all 
cyclists and complexity of the physiological variables (HR
and V̇O2) were similar for all cyclists. Similar results were 
found by Tucker, Bester et al. (2006) where in their study in 
South Africa, they demonstrated that the fractal dimension of 
the power outputs was similar for all subjects over the self-
paced 20-km time-trial and they ranged between 1.5 and 1.9 
(p > 0.05, not significant). In addition, in our study, we found 
significant difference between the fractal dimension of HR
and V̇O2 which suggest that each physiological control 
system within any physical body system has its own 
complexity. Moreover, the percentage error in estimating the 
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fractal dimensions was 0.03, and it is good since fractal 
dimension cannot be derived exactly (Dubuc et al , 1989). 
Despite there was no significant correlation of the complexity 
of the physiological control variables and the performance 
finishing times, there is the presence of a low positive 
relationship between heart rate and the finishing times of the 
cyclists. This shows that the cardiovascular physiological 
control system may represent a factor in determining 
performance. Thus, based on the fractal analysis method, the 
human body subjected to physical activity comprises of 
physiological control systems functioning at different signal 
complexities to reach an overall optimal physical 
performance. 

The recurrence plot of the self paced power output shows a 
rather complex behaviour. Therefore, recurrence quantitative 
analysis was then applied to these physiological data to 
determine the characteristics of the system control 
mechanisms underlying these physiological data. The 
significant difference in the recurrence rate, determinism and 
trapping times of the physiological systems that are 
cardiovascular system and the respiratory system implies that 
each physiological system has its own characteristic 
behaviour. This means that the system control mechanisms 
controlling these physiological systems are distinct in nature. 
The characteristics and complexity of these physiological 
systems are similar for all cyclists despite the cyclists’ 
physical differences which imply that in different physical 
systems, the control mechanisms are similar. There was also 
mixed relationships (positive and negative) between the 
physiological variables’ determinism (HR and V̇O2) and the 
finishing performance times of the cyclists but there were 
low mixed relationships (positive and negative) between the 
determinism of the physiological control signals and physical 
performance which favours one of the features predicted by 
the Central Governor Model. 

5 Conclusion 

Overall, this research showed that each physiological control 
system within a physical body system has its own 
characteristics based on the RQA measures and fractal 
dimensions which mean that different system control 
mechanisms or different number of system control 
mechanisms are controlling a particular physiological control 
system. The similarity of the fractal dimensions and the 
recurrence quantitative measures for all cyclists for each 
control system variable (cardiovascular system and 
respiratory system) implies that these system control 
mechanisms are similar in nature for all physical body 
systems. Moreover, there is the presence of fatigue especially 
when we consider that there is a low correlation between the 
complexity of heart rate data and finishing time’s 
performance. Also, determinism of HR and V̇O2
physiological control signals play important roles in 
predicting the finishing times performance of the cyclists. For 
instance, an increase in determinism in V̇O2 decreases 
finishing times performance improving physical performance 
and less fatigued while an increase in determinism in HR 
increases finishing times performance degrading physical 
performance and more fatigued. Future studies could include 
different levels of pacing (Chuckravanen, 2012) associated 
with different levels of power output (70% of their mean 

power output, mean power output of their self pace, 140% of 
their self pace power output) and their effects on the 
complexity of the physiological control signals and related to 
physical performance and fatigue levels. The research 
findings favour two predictions of the Central Governor 
Model especially the human body functions integratively and 
the complexity of these functions affect physical performance 
as well as the determinism characteristics of the physiological 
control systems influence physical performance. Future 
studies could replicate this work by involving elite-level 
cyclists to find out any similarities in the complexity of the 
self-pace power output as well as the physiological variables 
(HR and V̇O2) and also they may also include other 
physiological variable such as EMG at calf or quad muscles. 
It will be also useful to include ratings perceived exertion 
(RPE) to monitor the fatigue level of the cyclists at fixed 
distance of 1km or 2km for a 20-km cycling time trial and its 
relationship to the complexity of the physiological signals. 
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