International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Grid-connected Photovoltaic Power System Using Boost Half- Bridge Converter and MPPT Algorithm

P. Murali¹, T. Muni Prakash²

^{1, 2}Assistant Professor Department of EEE, JNTU India

Abstract: This paper focuses on the power electronics used in the renewable energy systems especially in the photovoltaic applications. In recent years, interest in natural energy has grown in response to increased concern for the environment. Due to the limitations in the energy available from conventional sources, worldwide attention is being focused on renewable sources of energy. Especially, the energy obtained from solar arrays, becomes more and more important. In grid connected applications, a modular micro-inverter integrated with each photovoltaic (PV) panel can reduce the overall system cost and increase the system reliability and MPPT efficiency. In order to make the PV generation system more flexible and expandable, the backstage power circuit is composed of a high step-up converter and a pulse width-modulation (PWM) inverter. The traditional voltage-fed-full-bridge DC-DC converter suffers high cost, low transformer efficiency and discontinuous input current problems. A current-fed-half-bridge converter topology is utilized herewith continuous input current, low cost and high efficiency features. A single-phase PV micro inverter system with galvanic isolation is presented. By integrating micro inverter to each PV panel, localized MPPT of each individual PV panel can be achieved, thus loading to fast tracking speed and higher system efficiency.

Keywords: MPPT, PV array, boost-half-bridge, grid-connected photovoltaic (PV) system, maximum power point tracking, repetitive current control.

1. Introduction

As a solution for the depletion of conventional fossil fuel energy sources and serious environmental problems, focus on the photovoltaic (PV) system has been increasing around the world. Grid connected solar energy technology is the fastest growing technology in the world today [1]-[3]. Grid connected converters are required to transfer green energy from solar system into the main grid. The first grid-connected inverters were based on Silicon Controlled Rectifiers (SCR) technology which was also limited in control and came with a high harmonic content which requires the use of bulky filters [3]. With the introduction of MOSFET for high power applications, the control of the grid connected inverters became more advanced.

In single phase grid connected photovoltaic power systems, the concept of micro inverter has become a future trend for its removal of energy yield mismatches among PV modules, possibility of individual PV module-oriented Optimal design, independent maximum power Point tracking, and "plug and play" concept [4]-[5]. The low voltage solar output can be connected to the grid by using a converter with high step up ratio. Hence, a boost-half-bridge DC-DC converter cascaded by an inverter is the most popular topology, in which a HF transformer is often implemented within the DC-DC conversion stage. By replacing the secondary half bridge with a diode voltage double, a new boost-half-bridge converter can be derived for unidirectional power Conversions [5]-[7]. The promising features such as low cost, high reliability and high efficiency, circuit simplicity can be obtained by use of the converter with minimal semiconductor devices. The repetitive current control technique is an effective solution for the elimination of periodic harmonic errors and has been previously investigated and validated in the un-interruptible power system, active power filters, boost-based PFC circuits, and grid-connected inverters/PWM rectifiers. In this paper, a

Paper ID: 020132094

plug-in repetitive current controller which is composed of a proportional part and an RC part is proposed to enhance the harmonic rejection capability [8].

The synchronized sinusoidal current can be injected to the grid by using a full bridge PWM inverter with an output LCL filter. Sinusoidal current with a unity power factor is supplied to the grid through a third-order LCL filter. In general, its performance is evaluated by the output current total harmonic distortions (THDs), power factor, and dynamic response [9]-[10]. The maximum Power Point (MPP) is the point in which maximum power is delivered from the solar cell to the PV system. MPPT is performed by the boost-half-bridge converter by using numerous MPPT techniques such as perturb and observe method, incremental conductance method, Ripples correlation method, etc. In this proposed system, an optimal P&O method has been developed to limit the negative effect of the converter dynamic responses on the MPPT efficiency. A closed-loop control technique has been proposed to minimize the PV voltage oscillation [11]-[12].

The galvanic isolation is introduced on the DC side in the form of a high frequency DC-DC transformer. The pulse width modulation control is applied to both the dc-dc converter and the inverter. Constant voltage dc link decouples the power flow in the two stages such that the dc input is not affected by the double-line-frequency power ripple appearing at the ac side. The fast dynamic response is achieved during the transients of load. In order to reach an optimal efficiency of the boost-half-bridge converter, ZVS techniques can be considered for practical implementation [13]-[14]. The MPPT function block in a PV converter system increases the efficiency.

2. Boost-Half-Bridge PV Microinverter

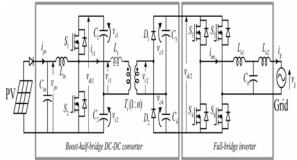


Figure 1: The boost-half-bridge PV micro inverter topology

The topology of the boost-half-bridge micro inverter for grid connected PV systems is depicted in Fig 1.The proposed circuit is composed of two decoupled power processing stages. The conventional boost converter is modified by splitting the output dc capacitor into two separate ones. Cin and Lin denote the input capacitor and boost inductor, respectively. The centre taps of the two MOSFETs (S1 and S2) and the two output capacitors (C1 and C2) are connected to the primary terminals of the transformer Tr, just similar to a half bridge. The transformer leakage inductance is reflected to the primary is represented by Ls and the transformer turns ratio is 1: n. A voltage double composed of two diodes (D1 and D2) and two capacitors (C3 and C4) is incorporated to rectify the Transformer secondary voltage to the inverter dc link. A full-bridge inverter composed of four MOSFETs (S3–S6) using synchronized PWM control serves as the dc– ac conversion stage. Sinusoidal current with a unity power factor is supplied to the grid through a third-order LCL filter (L01, L02, and C0). The duty cycle of S1 is denoted by d1. The switching period of the boost-half-bridge converter is Tsw1. The PV current and voltage are represented by i_{PV} and V_{PV}, respectively. The voltages across C1, C2, C3, and C4 are denoted by vc1, vc2, vc3, and vc4, respectively. The transformer primary voltage, secondary voltage, and primary current are denoted as vr1, vr2, and ir1 respectively. The low voltage side (LVS) dc-link voltage is vdc1 and the highvoltage side (HVS) dc-link voltage is vdc2.

The switching period of the full bridge inverter is Tsw2. The grid voltage is vg. The boost-half-bridge converter is controlled by S1 and S2 with complementary duty cycles. Neglect all the switching dead bands for simplification. When S1 is ON and S2 is OFF, vr1 equals to vc1. When S1 is OFF and S2 is ON, vr1 equals to -vc2. At steady state, the transformer volt-second is always automatically balanced. In other words, the primary volt second A1 (positive section) and A2 (negative section) are equal, so are the secondary volt-sec A3 (positive section) and A4 (negative section). Normally, D1 and D2 are ON and OFF in a similar manner as S1 and S2, but with phase delay tpd due to the transformer leakage inductance. Ideally, the transformer current waveform is determined by the relationships of vc1- -vc4, the leakage inductance Ls, the phase delay t_{pd}, and S1's turnon time d1Tsw1.

The ZVS techniques can be considered for obtaining optimal efficiency of the boost-half-bridge converter. It is worth noting that engineering tradeoffs must be made between the reduced switching losses and increased conduction losses

Paper ID: 020132094

when soft switching is adopted. When viewing from the full-bridge inverter, the boost-half- bridge converter just operates identically as a conventional boost converter, but with the extra features of the galvanic isolation as well as the high step-up ratio. The simple circuit topology with minimal use of semiconductor devices exhibits a low total cost and good reliability. In order to achieve fast dynamic responses of the grid current as well as the dc-link voltage, a current reference feed forward is added in correspondence to the input PV power.

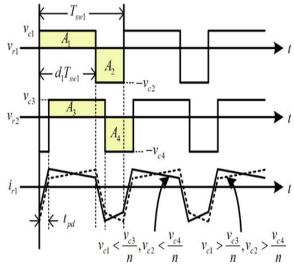
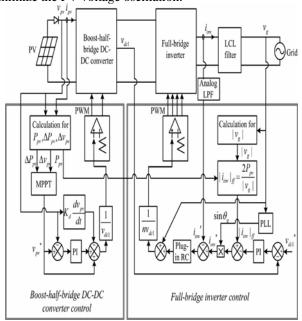


Figure 2: Idealized transformer voltage and current.


MPPT function block in a Typically, the converter/inverter system periodically modifies the tracking reference of the PV voltage, or the PV current, or the modulation index, or the converter duty cycles. If the converter dynamics are disregarded in the MPPT control, undesirable transient responses such as LC oscillation, inrush current and magnetic saturation may takes place. MPPT is performed by the boost-half-bridge DC-DC converter. An optimal P&O method has been developed to limit the negative effect of the converter dynamic responses on the MPPT efficiency. The closed-loop control technique has been proposed to minimize the PV voltage oscillation. However, the converter dynamic behavior associated with the MPPT operations can also influence the converter efficiency and functioning of the system. A customized MPPT producing ramp-changed PV voltage is then developed.

3. Description of System Control

The boost half bridge PV micro inverter system is controlled by a digital approach. The PV voltage and current are both sensed for calculation of the instantaneous PV power, the PV power variation, and the PV Voltage variation. The MPPT function block generates a reference for the inner loop of the PV voltage regulation, which is performed by the dc–dc converter. At the inverter side, the grid voltage vg is sensed to extract the instantaneous sinusoidal angle θg , which is commonly known as the phase lock loop. The inverter output current is pre-filtered by a first order low-pass filter on the sensing circuitry to eliminate the HF noises.

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

MPPT technique is used to extract maximum power in order to increase the efficiency of the system. The filter output is then fed back to the plug-in repetitive controller for the inner loop regulation. Either vdc1 or vdc2 can be sensed for the dc-link voltage regulation as the outer loop. In practice, the LVS dc-link voltage vdc1 is regulated for cost effectiveness. In order to achieve fast dynamic responses of the grid current as well as the dc-link voltage, a current reference feed forward is added in correspondence to the input PV power. The closed-loop control technique has been proposed to minimize the PV voltage oscillation.

Figure 3: Architecture of the proposed PV micro inverter system control

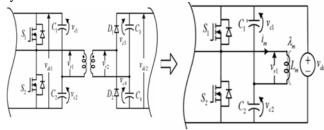
4. Plug-In Repetitive Current Controller

Using an LCL filter in a grid-connected inverter system has been recognized as an attractive solution to reduce current harmonics around the switching frequency, improve the system dynamic response, and reduce the total size and cost. Typically, an undammed LCL filter exhibits a sharp LC resonance peak, which indicates a Potential stability issue for the current regulator design. Hence, either passive damping or active damping techniques can be adopted to attenuate the resonance peak below 0 dB. The current sensor is placed at the inverter side instead of the grid side.

4.1 Boost-Half-Bridge Converter Control

Paper ID: 020132094

The PV voltage is regulated instantaneously to the command generated by the MPPT function block. High bandwidth proportional-integral control is adopted to track the voltage reference and to minimize double line- frequency disturbance from LVS dc link. The capacitor voltage differential feedback is introduced for active damping of the input LC resonance. Typically, the MPPT function block in a PV converter/inverter system periodically modifies the tracking reference of the PV voltage, or the PV current. In most cases, these periodic perturbations yield step change dynamic responses in power converters. The vC1–vC4 is changing dynamically in accordance with d1. As a result, at any time, the charge and discharge rate of C1-C4 must be


limited such that the transformer flux is not saturated. For the sake of control simplicity and low cost, developing a customized MPPT method by carefully taking care of the boost-half-bridge converter dynamics.

4.2 Dynamics of the Boost-Half-Bridge Converter

The boost-half-bridge converter can be regarded as the integration of two sub circuit topologies: 1) the boost converter and 2) the half-bridge converter. The PV voltage regulator depicted in Fig. 8 has ensured that both the steady state and the dynamic response of the boost converter part are taken care of. Hence, the following analysis will be only concentrated on the dynamics of the half-bridge converter part. The major role of the half-bridge converter here is to transfer energy from the LVS dc link to the HVS dc link through the transformer. But besides that, it also allocates the amount of stored charges on the upper dc-link capacitors (C1 and C3) and the lower dc-link capacitors (C2 and C4) the effect of the transformer leakage inductance and power losses at this time, Fig. 9depicts the extracted half bridge converter part and its equivalent circuit seen from the LVS dc link. As vdc1 is regulated to a constant dc, the LVS dc link in Fig. 9(b) is simply connected to a constant voltage source for approximation. C3 and C4 are both reflected to the transformer primary and combined with C_1 and C_2 . C_1^{I} and $C_2^{\ l}$ stand for the equivalent dc-link capacitors, where $C_1^{\ \ l} = C1 + n2C3$ and $C_2^{\ \ l} = C2 + n2C4$. Lm, im, and λm denote the transformer primary magnetizing inductor, dc current, and dc flux linkage.

4.3 Variable Step Size MPPT Algorithm

For simplicity, it is assumed that the PV module is working under the standard irradiance (1000W/m) and the room temperature (25 °C). It is worth mentioning that some MPPT techniques calculate the step size online relying on the instantaneous values of ΔPPV and ΔvPV in order to make the MPPT more adaptive. However, the sensed Δ PPV and ΔvPV are vulnerable to noises, particularly, when they are small. Therefore, an alternative method is adopted for robustness. Two points SPV1 and SPV2 on the dP/dip curve are selected to divide the PV operating points into three different zones. In zone 0, PV output power is close to the MPP, where a fine tracking step size is used to approach the exact MPP. In zones 1 and 2, a larger tracking step size is applied to boost up the tracking speed. The adopted MPPT algorithm is shown in Figure. The tracking step sizes in zones 0, 1, and 2 are represented by $\Delta vref0$, $\Delta vref1$, and Δvref2 respectively. For the sake of control simplicity and low cost, developing a customized MPPT method by carefully taking care of the boost-half-bridge converter dynamics.

Figure 4: Half-bridge converter part and Equivalent circuit seen from the LVS dc link.

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

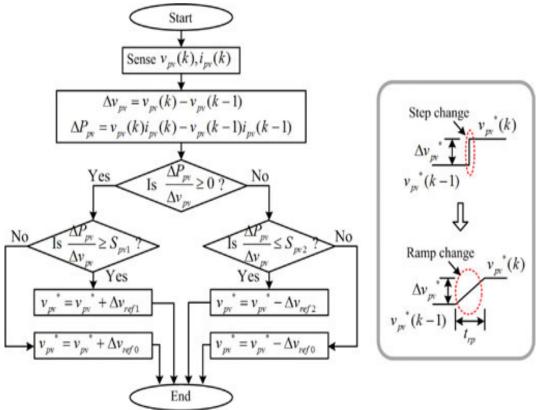


Figure 5: Flow chart of the variable step-size MPPT

5. Simulation Circuit Diagram

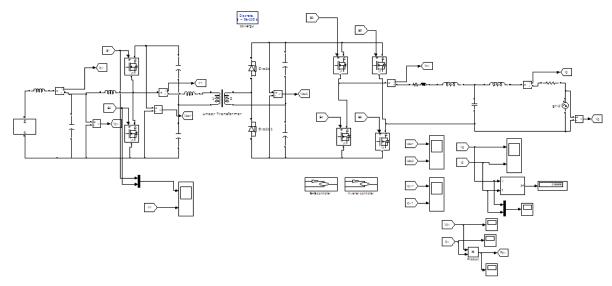
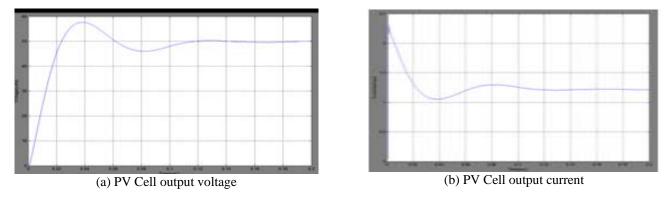



Figure 6: Simulation model of the proposed system

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

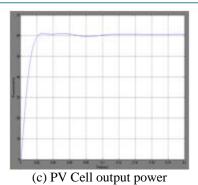
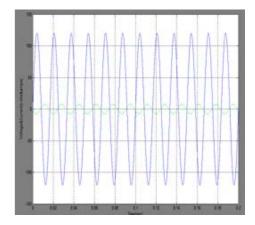
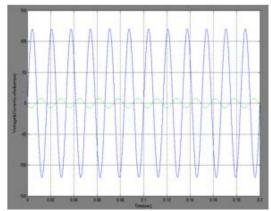




Figure 7: PV Cell output

Figure 8: Steady state grid voltage and current under light & heavy load conduction

6. Conclusion

A boost-half-bridge micro inverter for grid-connected PV systems has been presented. The minimal use of semiconductor devices, circuit simplicity, and easy control, the boost-half-bridge PV micro inverter possesses features of low cost and high reliability. The boost- half-bridge dc-dc converter has a high efficiency (97.0% - 98.2%) over a wide operation range. And also the current injected to the grid is regulated precisely and stiffly. Under both heavy load and light load conditions, high power factor (>0.99) and low THD (0.9%-2.87%) are obtained. The ramp-changed reference generated by the customized MPPT method for the PV voltage regulation guarantees a correct and reliable operation of the PV micro inverter system. Fast MPP tracking speed and a high MPPT efficiency (>98.7) is achieved by the variable step-size technique provides a correct and reliable operation of the PV micro inverter system.

References

- [1] Yeong-Chau Kuo, Tsorng-Juu Liang and Jiann-Fuh Chen, "Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System, "IEEE Transactions on Industrial Electronics, vol.48, no.3, June 2001.
- [2] J. Kishore Kumar, V. Lakshmi Devi and H. Rajesh Kumar," Design and Analysis of a Grid-Connected Photovoltaic Power System," International Journal of Power System Operation and Energy Management, ISSN (PRINT): 2231 4407, Volume-1, Issue-4, 2012.
- [3] Billy M. Ho and Henry Shu-Hung Chung, "An Integrated Inverter with Maximum Power Tracking for Grid-Connected PV Systems," IEEE Transactions on Power Electronics, vol. 20, no.4, July 2005.
- [4] Eftichios Koutroulis and Frede Blaabjerg," Methods for Optimal Design of Grid Connected PV Inverters," International Journal of Renewable Energy Research, Vol.1, No.2, May 2011.
- [5] Prashant. V. Thakre, V. M. Deshmkh, and Saroj Rangnekar," Performance Analysis of Photovoltaic PWM Inverter with Boost Converter for Different Carrier Frequencies Using MATLAB," IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012.
- [6] Suman Dwari and Leila Parsa," An Efficient High-Step-Up Interleaved DC–DC Converter with a Common Active Clamp," IEEETransactions on Industrial Electronics, vol.26, no.1, January 2011.
- [7] Tamer T.N. Khatib, Azah Mohamed and Nowshad Amin, "A New Controller Scheme for PhotovoltaicsPowerGeneration Systems," European Journal of Scientific Research, ISSN 1450-216X, Vol.33 No.3 (2009), pp.515-524.
- [8] CH.Sravan and D.Narasimha Rao, "An Interleaved Boost Converter with Zero-Voltage Transition for Grid Connected PV System,"
- [9] International Journal of Emerging trends in Engineering and Development, ISSN 2249-6149 Issue 2, Vol.2, March-2012.
- [10] Soeren Baekhoej Kjaer, John K. Pedersen and Frede Blaabjerg, "A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules," IEEE Transactions on Industrial Electronics, vol.41, no.5, September 2005.
- [11] Nicola Femia, Giovanni Petrone and Giovanni Spagnuolo, "A Technique for Improving P&O MPPT Performances of Double-StageGrid-Connected Photovoltaic Systems," IEEE Transactions on Industrial Electronics, vol.56.
- [12] Rong-Jong Wai and Wen-Hung Wang, "Grid-Connected Photovoltaic Generation System," IEEE Transactions on Circuits and Systems, vol.55, no.3, April 2008.
- [13] Nicola Femia, Giovanni Petrone and Giovanni Spagnuolo, "Optimization of Perturb and Observe Maximum Power Point Tracking Method," IEEE Transactions on Power Electronics, vol. 20, no.4, July 2005.
- [14] Quan Li and Peter Wolfs, "A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies with Three Different DC Link Configurations," IEEE Transactions on Power Electronics, vol. 23, no.3, May 2008.

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

- [15] D. Liu and H. Li, "A ZVS bi-directional DC–DC converter for multiple energy storage elements," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513–1517, Sep. 2006.
- [16] C. Yoon, J. Kim, and S. Choi, "Multiphase DC–DC converters using a boost-half-bridge cell for high-voltage and high-power applications," IEEE Trans. Power Electron., vol. 26, no. 2, pp. 381–388, Feb. 2011.

Author Profile

- **P. Murali** completed M.Tech in Electrical Power Systems at J.N.T.U University. Presently working as Asst. Professor in The Department of Electrical and Electronics Engineering at N.E.C.
- **T. Muni Prakash** completed M.Tech in Power Electronics at J.N.T.U University. Presently working as Asst. Professor in The Department of Electrical and Electronics Engineering at N.E.C.