
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Fault Tolerance in Mobile Computing using Multi
Agent Environment for

Electronic-Business Applications
Shiv Kumar1, Shrawan Kumar2

1Mewar University, Chittorgargh, Department of Computer Science of Engineering, NH-79, Gangrar-312901, India

2Mewar University, Chittorgargh, Department of Computer Science of Engineering, NH-79, Gangrar-312901, India

Abstract: Mobile agent technology has become a new paradigm for distributed real-time systems because of their inherent advantages.
In any distributed system, along with other issues, survivability and fault tolerance are vital issues for deploying mobile-agent systems.
E-business becoming a prominent domain for deploying agent technology, it also faces reliability problems due to the failure of agent
platform and communication link etc. The reliability is a factor that may affect the performance, availability, and strategy of mobile
agent systems. Agent technology is a field of considerable active research. Various classes of agents (e.g. intelligent agents, software
agents) have emerged so far. Software agents are useful for distributed systems & electronic commerce. However to fully deploy
software agents in practice, a number of challenging issues especially security, fault tolerance and privacy need to be addressed. The
scope of this discussion is limited to mobile agents in a multi agent environment for Electronic Business applications. Electronic
commerce is one of the most important application areas of mobile agent technology. A secure mobile agent system (SMAS) model is
established for e-commerce environment. E-Commerce and M-Commerce can help a company or enterprise to extend its market place
to unlimited region

Keywords: Mobile Agents, Trusted Mobile Agents in Multi Agent Environment, Security in E-commerce, Fault tolerance.

1. Introduction

A multi-agent system (MAS) is a system composed of
multiple interacting intelligent agents. Multi-agent systems
can be used to solve problems which are difficult or
impossible for an individual agent or monolithic system to
solve. Agent systems are open and extensible systems that
allow for the deployment of autonomous and proactive
software components. Multi-agent systems have been
brought up and used in several application domains.

Fault-tolerant computing is the art and science of building
computing systems that continue to operate satisfactorily in
the presence of faults. A fault-tolerant system may be able to
tolerate one or more fault-types including -- i) transient,
intermittent or permanent hardware faults, ii) software and
hardware design errors, iii) operator errors, or iv) externally
induced upsets or physical damage. An extensive
methodology has been developed in this field over the past
thirty years, and a number of fault-tolerant machines have
been developed -- most dealing with random hardware
faults, while a smaller number deal with software, design
and operator faults to varying degrees. A large amount of
supporting research has been reported.

A mobile agent is defined as a class of agent with the ability
during execution to migrate from one host to another where
it can resume its execution and while this may assist in
network traffic reduction and in overcoming latencies in the
network, the ability of the agent to move around does
however introduce significant security concerns." Mobile
agents are no longer a theoretical issue since different
architecture for their realisation have been proposed. The
goal of mobile agent system is to provide a distributed

computing infrastructure supporting applications whose
components can move between different execution
environments. Electronic Commerce can help a company or
enterprise to extend its market place to unlimited region. But
security is the primary concern for the E- Commerce
application in mobile agent computing. The problem of
security data section in a Mobile Agent from discovery &
exploitation by a malicious host is a different task. Mobile
agent systems provide a greater flexibility and
customizability to distributed applications like Electronic
Business & information retrieval in the current scenario.
With the increasing market of Electronic Commerce it
becomes an interesting aspect to use autonomous Mobile
Agents for Electronic Business transactions.

1.1 Mobile Agent System Model:

The Object Management Group defines a software agent as
“a computer program that acts autonomously on behalf of a
person or organization”. The following properties
characterize agents:

 Pro- active (support of the user’s work)
 Adaptive (learning the user’s preferences or the ability to

work on different platforms)
 Autonomous (limited communication with its creator)
 Intelligent (making ‘intelligent’ decisions)
 Mobile (can actively migrate in networks to different

systems and move directly to the local resources, like
databases or application servers)

Paper ID: 020132036 967

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Mobile agents are programs that can migrate from host to
host in a network, at times and to places of their own
choosing. The state of the running program is saved,
transported to the new host, and restored, allowing the
program to continue where it left off.

Mobile-agents are capable of continued, autonomous
operation disconnected from the owner and they migrate to
other hosts during their lifetime to perform their task. The
use of mobile-agents saves bandwidth and permits off-line
and autonomous execution in comparison to usual
distributed systems based on message passing as shown in
Figure 1 below. Essentially, a mobile-agent consists of code,
data and state information needed to carry some computation
[1].

1.2 Mobile Agent Fault Tolerance

Mobile agents react dynamically and autonomously to the
changes in their environment, which makes them robust, and
fault tolerant. They have the ability to distribute themselves
in the network in such a way as to maintain the optimal
configuration for solving the particular problem. If a host is
being shut down, all agents executing on that machine will
be warned and given time to dispatch themselves and
continue their operation on another host in the network [3].
Some important terminologies related to fault tolerance are
as follows [4]:

 Fault
 Fault Models
 Error
 Failure
 Crash failure
 Omission failure
 Transient failure
 Byzantine failure
 Software failure
 Temporal failure

1.3 Mobile Agent Fault Tolerance in the Field of E-
Commerce

In a scenario where a mobile agent is equipped with
electronic commerce capabilities it necessary to guarantee
that an agent does not get lost or duplicated during its
itinerary. Thus, the main objective for the design of our
architecture was to achieve a reliable, fault tolerant and

secure agent Transfer which guarantees the exactly-once
semantic (only-once-type-2-semantic).

E-Commerce can help a company or enterprise to extend its
market place to unlimited region. At the same time, to let
companies and enterprises can have transactions through
Internet; more new techniques are developed for Internet and
WWW applications. Agent technique is one of the important
technologies developed to support the Internet applications
[5].

The Architecture for e-marketplace: -The architecture for E-
commerce interface is divided into three layers:

 Mobile Agent Platform
 Interface
 E-Commerce Platform

2. Role of Mobile Agent in Electronic
Commerce Environment [2]

Mobile agents are well suited for electronic commerce. A
commercial transaction may require real-time access to
remote resources such as stock quotes and perhaps even
agent-to-agent negotiation. Different agents will have
different goals, and will implement and exercise different
strategies to accomplish these goals. We envision agents that
embody the intentions of their creators, and act and negotiate
on their behalf. Mobile agent technology is a very appealing
solution to this kind of problem. An electronic commerce
transaction may be viewed in terms of four different phases
[1]:

 Product brokering,
 Merchant brokering,
 Negotiation
 Payment and delivery

Product brokering consists in the gathering of information
about the product that is going to be bought. Merchant
brokering involves the evaluation of a set of alternatives in
order to make the purchase. Making the decision implies
considering all the tradeoffs that the various products offer:
price, warranties, delivery time, and others. During the
negotiation phase the agent settles the final terms of the
commercial transaction. The characteristics of the market
directly influence the outline of this phase. In markets where
prices and characteristics are fixed, negotiation may not even
exist. Finally, in the purchase and delivery phase of the
transaction, the agent actually makes the acquisition and
delivers the money (or its electronic equivalent) against the
goods [6].

2.1 Fault Tolerance Thread Challenges

With e-commerce growing at a very high rate the need for
mobile agents is also increasing. It has been proposed to use
mobile agent technology to provide some of the services of
e-commerce. Agents are sent out into the Internet by an
interested user and gather the required information. If
necessary they can collaborate with other agents, engaging in

Paper ID: 020132036 968

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

information sharing, exchanging or buying. Schemes are
revised to create marketplaces where agents can deal and
even take part in auctions. For this purpose an agent is
equipped with the mechanisms to deliver payment for
purchased goods or services on behalf of its authority [7].
The following failure can be occur in this process:

A mobile agent crashes when its current local agent server
halts execution, thus terminating all active mobile agents.
Such an event is encountered when the host running the
agent server platform crashes or a fault is encountered in the
agent server process.

 No stable storage mechanism is provided at visited agent
servers for the recovery of executing agents.

 Reliable communication links are assumed.
 All agent servers are correct and trustworthy.
 The home agent server is always available.
 At least once failure semantics are assumed, i.e. the agent

performs its task at least once. If an agent server crashes
the task is repeated at available agent servers. This
assumption is applicable to application where mobile
agents only consume information at agent servers.

 A mobile agent ignores crashed agent servers.
 A mobile agent consumes information at agent servers.

The state of agent servers is not modified.

2.2 Problem and Solution Proposed

Based on above construction of mobile agent system, a paper
brings forth the mobile agent-based e-commerce system
framework. Its model is shown in figure 3.

Figure 3: Mobile agent based E-Commerce system
framework

In this system, agent service center provides catalog service,
registers mobile agent’s basic information, maintains agent’s
lifecycle, cancels illegal agent in time and provides agent
query service. In order to enforce system security, especially
for mobile agent protection, agent service center also
maintains a table which records the history of host visitation,
it gets task accomplish information of agent in visitation

from its log files, calculates the host’s credit degree, puts the
result in the history table and re-calculates it so that mobile
agent could optimizes routing strategy. Service center need
to provide host service query function in order to help agent
affirm the servers on which its task could be accomplished,
and choose the best route. Following is the workflow of
system:

1) User submits a request through user interface.
2) Agent Server analysis the request and creates static

agent or mobile agent according to the request of task,
then registers the agent’s information in agent service
center.

3) Static agent visits local resource under security control
of agent server, completes user’s request and returns the
result to user. In the meantime, it registers agent’s
logout information on agent service center.

4) Mobile agent registers its information on agent service
center, queries for host service table, returns agent
server, works out migration route or plan according to
routing strategy.

5) Mobile agent queries the history table of host visiting on
agent service center, gets credit degree of host on the
route, returns the optimized migration route of agent
server.

6) Mobile agent sends out migration request to server,
agent server makes agent hung up, encrypted, packed
and sends it to destination host.

7) Destination host accepts agent, authenticates each other.
8) Destination host carries out security strategy according

to authentication result, assigns limited execution
environment for agent, and generates monitor agent to
monitor the execution information of mobile agent.

9) Mobile agent carries out different security strategy
according to authentication result, executes task under
assigned resource. If necessary, it could make alliance
with other agents and accomplish the task
collaboratively.

10) Agent goes through hosts in routing table and completes
its task, collects the results, returns it to user and
submits log files to agent service center, registers logout
information.

2.3 Multi-Version Software Fault Tolerance Techniques
[4]:

Multi-version fault tolerance is based on the use of two or
more versions (or “variants”) of a piece of software,
executed either in sequence or in parallel. The versions are
used as alternatives (with a separate means of error
detection), in pairs (to implement detection by replication
checks) or in larger groups (to enable masking through
voting).

Recovery Blocks: The Recovery Blocks technique combines
the basics of the checkpoint and restart approach with
multiple versions of a software component such that a
different version is tried after an error is detected Figure 3).
Checkpoints are created before a version executes.
Checkpoints are needed to recover the state after a version
fails to provide a valid operational starting point for the next
version if an error is detected.

Paper ID: 020132036 969

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: Recovery Block Model

N-Version Programming

N-Version programming is a multi-version technique in
which all the versions are designed to satisfy the same basic
requirements and the decision of output correctness is based
on the comparison of all the outputs (Figure 4). The use of a
generic decision algorithm (usually a voter) to select the
correct output is the fundamental difference of this approach
from the Recovery Blocks approach, which requires an
application dependent acceptance test.

Figure 4: N-Version Programming Model

N Self-Checking Programming

N Self-Checking programming is the use of multiple
software versions combined with structural variations of the
Recovery Blocks and N-Version Programming. N Self-
Checking programming using acceptance tests is shown on
Figure 5. Here the versions and the acceptance tests are
developed independently from common requirements. This
use of separate acceptance tests for each version is the main
difference of this N Self-Checking model from the Recovery
Blocks approach

Figure 5: N Self-Checking Programming using Acceptance
Tests

N self-checking programming using comparison for error
detection is shown in Figure 6. Similar to N-Version
Programming, this model has the advantage of using an
application independent decision algorithm to select a
correct output. This variation of self-checking programming
has the theoretical vulnerability of encountering situations
where multiple pairs pass their comparisons each with
different outputs

Consensus Recovery Blocks

The Consensus Recovery Blocks (Figure 7) approach
combines N-Version Programming and Recovery Blocks to
improve the reliability over that achievable by using just one
of the approaches. The acceptance tests in the Recovery
Blocks suffer from lack of guidelines for their development
and a general proneness to design faults due to the inherent
difficulty in creating effective tests. The use of voters as in
N-Version Programming may not be appropriate in all
situations, especially when multiple correct outputs are
possible. In that case a voter, for example, would declare a
failure in selecting an appropriate output. Consensus
Recovery Blocks uses a decision algorithm similar to N-
Version Programming as a first layer of decision. If this first
layer declares a failure, a second layer using acceptance tests
similar to those used in the Recovery Blocks approach is
invoked.

Figure 7: Consensus Recovery Blocks

Fault Tolerance Approach for enterprise applications [8]

Three classes of failures are identified in the literature:

 Behavioural and business logic failures,
 Operational failures
 Quality of service failures

Paper ID: 020132036 970

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

It focuses on behavioural and quality of service failures. It
introduces a model-based approach to failure management
for Rich Service-based SOAS as follows. First they give a
failure model, including the notion of a failure hypothesis.
Then they introduce their approach to defining Detectors that
identify occurrence of failures at run time. Finally, they
introduce strategy-based Mitigators that provide recovery
mechanisms after a failure is detected. As a consequence, we
obtain the following benefits:

1)We can base the identification of a failure on the system
model,

2)The logic to detect an error is separated from the logic to
recover from it,

3)We can reuse the mitigation strategies in different
contexts.

Here they consider mainly two types of failures: failures
where a service does not complete its task, or where an error
causes an unexpected message flow. Our approach can deal
with both types of failures. We can detect unexpected
message flow by comparing the messages exchanged with
the sequences defined in the MSCs. Furthermore, our model
allows the specification of deadlines between events
enabling the detection of failures where messages are not
sent. This capability is important in the web service domain
to address the requirements of SLA. Deadline assertions can
be leveraged to encode SLA, and detect possible violations.

In Mobile Agent-based Applications, a Survey

Al-Jaljouli et al [11] have implemented mobile agent in e-
commerce to search and to filter information of interest from
electronic markets. They describe also robust security
techniques that ensure a sound security of information
gathered throughout agent’s itinerary against various
security attacks, as well as truncation attacks. The figure 6
describes the sequence of processes carried out during the
agent’s lifetime. The authors utilize two co-operating agents
where the initial verification terms are securely stored within
a secondary agent (SA) that resides at the initiator and
cooperates with a major agent (MA) that traverses the
Internet.

Nipur et al. [12] propose a fault tolerant comparison internet
shopping system Best Deal. The author has conducted the
simulation by launching nine shopping mobile agents where
each has to visit five supplier sites to get the best deal for
different products. Performance is measured in terms of
execution steps as well as execution time of the simulation.
The mobile agent survives even if failure rate is more than
80% however for higher failure rate performance degraded
significantly.

Li et al. [13] have studied mobile agent oriented M-
commerce platform. The design and implementation of a
mobile agent platform for M-commerce applications is
discussed in this paper. According to the authors, the
advantage of adopting mobile agents for M-commerce is to
scale up to large, dynamic world market places distributed

over the Internet and to ease the access and participation of
mobile users

Figure 6: System architecture [11]

3. Drawbacks of Solution Proposed

Most of the software fault tolerance techniques have some
advantages and also have some disadvantages.

Scientist “Goutam Kumar Saha” [9] inherits an overhead
(of the order of three) of fault tolerance in both time and
space. In order to tolerate potential transient faults. They
cannot avoid such time and space redundancy. Though a
self-stabilizing distributed algorithmic technique running on
each node on the network is useful for bringing a system to a
legal configuration in a finite number of steps from an
arbitrary illegal system configuration caused by message
corruption or sensor malfunction, it suffers from high time
redundancy. Other fault tolerant schemes like, Algorithm
Based Fault Tolerance in [18], Assertions in [19] etc., suffers
from the lack of generality and wide applicability. Other
costly schemes like, NVersion Programming (NVP) in [10],
Triple Modular Redundancy (TMR) relies upon multiple
versions of software and hardware. However, the proposed
scheme is a low-cost solution because this relies on only one
version of agent software, which is enhanced with the
protective software fix. This approach does not lack in
generality and applicability. This is intended to complement
the intrinsic EDM in agent server systems towards tolerating
random bit-errors. In other words, the proposed work is
based on an enhanced single version-programming (ESVP)
scheme using the extra protective code. The proposed
technique needs three replicas or images of the agent code. It
is assumed that an agent platform will allow its replication or
reception. It does not need multiple independently developed
versions of the agent-code. Rather it uses only an enhanced
single – version (ESV) agent-code. It tolerates (detect &
recover) one byte -fault in every three bytes at the same
offset or displacement inside the three images of an agent.

4. Case Study

In order to better illustrate our approach in this section we
present a survey on the topic “Fault Tolerance in Mobile
Computing in Multi Agent Environment” as a running case
study throughout the paper. The ability of a single agent is
limited, so it is desirable for an individual agent to
communicate and co-operate with other agents to perform
complex tasks that are beyond its own capability. Fault
tolerance is fundamental to further development of mobile

Paper ID: 020132036 971

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

agent based applications. Fault tolerance is the ability of a
system to perform its function correctly even in the presence
of internal faults. Based on duration, fault can be classified
as transient or permanent. A transient fault is not
reproducible because it will eventually disappear, whereas a
permanent one will remain unless it is removed by some
external agency. A particularly problematic type of transient
fault is the intermittent fault that recurs, often unpredictably.
General fault tolerance procedure includes error detection
and error recovery. Error detection is the process of
identifying that the system is in an invalid state. We simulate
the behaviour of an E-commerce in terms of fault tolerance
for a multi agent environment.

5. Acknowledgments

Foremost, I would like to express my sincere gratitude to my
advisor Mr. Shrawan Kumar Sharma for the continuous
support of my study, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped
me in all the time of research and writing of this paper. I
could not have imagined having a better advisor and mentor
for my M.Tech study.

Besides my advisor, I would like to thank the rest of my
department professors or lecturers: Prof. R.P.Ojha and
Santosh Upadhyay and others, for their encouragement,
insightful comments, and hard questions. Last but not the
least; I would like to thank beloved, Sneha Rani supporting
me spiritually throughout my life.

References

[1] Research on Mobile Agent-based E-Commerce System
Framework Wenna Liu1, Deli Yang2 School of
Management, Dalian University of Technology, Dalian
116024, China1 wenal@sina.com, 2
somdyang@dlut.edu.cn

[2] Reliable Multi Agent System For E-Business
Applications A. Kannammal*, V. Ramachandran**,
N.Ch.S.N. Iyengar*** *Dept of Computer Technology
& Applications Coimbatore Institute of Tech.
Coimbatore 641 014 kannaphd@yahoo.co.in

[3] **Dept of Computer Science, College of Engineering,
Guindy Anna University, Madras 600 02
rama@annauniv.edu

[4] ***School of Computing Sciences, Vellore Institute of
Technology,Vellore-632014 nchsniyr@yahoo.com

[5] Mobile Agents Intelligent Assistants on the Internet
[6] Analysis of Different Software Fault Tolerance

Techniques Golam Moktader Nayeem, Lecturer,
Department of ECE, Southern

[7] University Bangladesh & Mohammad Jahangir Alam,
Lecturer, Department of CSIT, Southern University
Bangladesh

[8] W. Jansen. Counter measures for Mobile Agent
Security. In Computer Communications, Special Issue
on Advances in Research and Application of Network
Security, November 2000.
http://citeseer.ist.psu.edu/article/jansen00countermeasur
es.html

[9] Research on Mobile Agent-based E-Commerce System
Framework Wenna Liu1, Deli Yang2 School of
Management, Dalian University of Technology, Dalian
116024, China 1 wenal@sina.com, 2
somdyang@dlut.edu.cn

[10]Analysis of Different Software Fault Tolerance
Techniques Golam Moktader Nayeem, Lecturer,
Department of ECE, Southern

[11]University Bangladesh & Mohammad Jahangir Alam,
Lecturer, Department of CSIT, Southern University
Bangladesh

[12] International Computer Software and Applications
Conference, 2009, p. 50-45.

[13]A Fault Tolerance Approach for Enterprise Applications
Vina Ermagan, Ingolf Krüger, Massimiliano Menarini
University of California San Diego {vermagan,
ikrueger, mmenarini}@ucsd.edu.

[14]Goutam Kumar Saha ,Transient Fault Tolerance in
Mobile Agent Based Computing Scientist-F, CDAC,
Kolkata, India, Mailing Address: CA – 2 / 4 B,
Baguiati,Deshbandhu Nagar, Kolkata 700059, West
Bengal, India, gksaha@rediffmail.com

[15]Avizienis, A. The N-Version Approach to Fault
Tolerant System, IEEE Trans. Software Engineering, v.
SE-11, n.12, p.1491-1501, 1985.

Author Profile

Shiv Kumar received the M. Tech. degree in
Computer Science and Engineering from Mewar
University Chittorgargh in 2012. During 2007-2013, he
stayed in Canon India Private limited Center of

Excellence center and India Software Center Noida and Gurgaon of
India. He know with Mewar University, Chittorgargh.

Shrawan Kumar Sharma is currently pursuing
master’s degree program in Computer science and
engineering in Mewar University, India,

Paper ID: 020132036 972

