
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Literature Survey on a New Advanced Refactoring
Based Approach for Parallelism Using
Heterogeneous Parallel Architectures

Shanthi Makka1, Bharat Bushan Sagar2

1Assistant Professor, JRE Group of Institutes and Ph.D. Scholar at BITs, Mesra (Noida Campus),
Greater Noida, India-201308

2Assistant Professor at BITs, Mesra (Noida Campus), Sector-1, near Metro Station ,Noida, India

Abstract: Refactoring is the process of changing the structure of a program without changing its behavior. Refactoring has so far only
really been deployed effectively for sequential programs. However, with the increased availability of multi core systems, refactoring can
play an important role in helping both expert and non-expert parallel programmers structure and implement their parallel programs.
This paper describes benefits or advantages of a refactoring approach for parallel programs using heterogeneous parallel architectures
such as GPUs and CPUs. A refactoring based methodology gives many advantages over unaided parallel programming: it helps identify
general patterns of parallelism; it guides the programmers through the process of refining a parallel program, whether new or existing;
it enforces separation of concerns between application programmers and system programmers; and it reduces time to deployment. All of
these advantages help programmers understand how to write parallel programs.

Keywords: refactoring, parallelism, CPU, GPU, refactoring tool

1. Introduction

Despite Moore’s “law” [24], uniprocessor clock speeds have
now stalled. Rather than using single processors running at
ever higher clock speeds, and drawing ever increasing
amounts of power, even consumer laptops, tablets and
desktops now have dual, quad or hexa core processors.
Haswell, Intel’s next multi core architecture, will have eight
cores by default. Future hardware is likely to have even more
cores, with many cores and perhaps even mega core systems
becoming main stream. This means that programmers need
to start thinking parallel, moving away from traditional
programming models where parallelism is a bolted-on
afterthought towards new models where parallelism is an
intrinsic part of the software development process. One
means of developing parallel programs that is attracting
increasing interest is to employ parallel patterns, that is, sets
of basic, pre-defined building blocks that each model and
embed a frequently recurring pattern of parallel computation.

In the multi core era [14], a major programming task will be
to make programs more parallel. This is tedious because it
requires changing many lines of code, and it is error-prone
and non-trivial because programmers need to ensure non-
interference of parallel operations. Fortunately, refactoring
tools can help reduce the analysis and transformation burden.
This paper discuss how refactoring tools can improve
programmer productivity, program performance, and
program portability and also present the current incarnation
of this vision: a toolset that supports several refactoring for
(i) making programs thread-safe, (ii) threading sequential
programs for throughput, and (iii) improving scalability of
parallel programs.

The strong need for increased computational performance in
science and engineering has led to the use of heterogeneous

computing, with GPUs and other accelerators acting as co-
processors for arithmetic intensive data parallel workloads
[20–23]. The trend towards heterogeneous computing and
highly parallel architectures has created a strong need for
software development infrastructure in the form of parallel
programming languages and subroutine libraries supporting
heterogeneous computing on hardware platforms produced
by multiple vendors. Many existing science and engineering
applications have been adapted to make effective use of
multi-core CPUs and massively parallel GPUs.

2. Refactoring

The term refactoring was originally introduced by William
Opdyke in his PhD dissertation [2]. Refactoring is basically
the object oriented variant of restructuring: “the process of
changing a [object-oriented] software system in such a way
that it does not alter the external behavior of the code, yet
improves its internal structure” [1]. The key idea here is to
redistribute classes, variables and methods across the class
hierarchy in order to facilitate future adaptations and
extensions. In the context of software evolution,
restructuring and refactoring are used to improve the quality
of the soft- ware (e.g., extensibility, modularity, reusability,
complexity, maintainability, efficiency). Refactoring and
restructuring are also used in the context of reengineering,
which is the examination and alteration of a subject system
to reconstitute it in a new form and the subsequent
implementation of the new form. In this context, re-
structuring is needed to convert legacy code or deteriorated
code into a more modular or structured form [1], or even to
migrate code to a different programming language or even
language paradigm.

Paper ID: 020132002 1166

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The key defining aspect of refactoring is its focus on purely
structural changes rather than on changes in program
functionality. Some advantages of refactoring are as follows:

(i) Refactoring aims to improve software design. Without
refactoring, a program design will naturally decay: as
code is changed, it progressively loses its structure,
especially when this is done without fully understanding
the original design. Regular refactoring helps tidy the
code and retain its structure.

(ii) Refactoring makes software easier to understand.
Refactoring helps improve readability, and so makes
code easier to change. A small amount of time spent
refactoring means that the program better communicates
its purpose.

(iii) Refactoring helps the programmer to program more
rapidly. Refactoring encourages good program design,
which allows a development team to better understand
their code. A good design is essential to maintaining
rapid, but correct, software development.

Refactoring activities: - The refactoring process consists of a
number of distinct activities:

1) Identify where the software should be refactored.
2) Determine which refactoring(s) should be applied to the

identified places.
3) Guarantee that the applied refactoring preserves

behavior.
4) Apply the refactoring.
5) Assess the effect of the refactoring on quality

characteristics of the software (e.g., complexity,
understandability, maintainability) or the process (e.g.,
productivity, cost, effort).

6) Maintain the consistency between the refactored program
code and other software artifacts (such as documentation,
design documents, requirements specifications, tests and
so on).

In the past, refactoring has been traditionally associated with
improving the structure of the code, thus making the code
more readable and more reusable, even across different
platforms.

3. Refactoring Approach to Parallelism

For decades, programmers relied on Moore’s Law [3] to
improve the performance of their applications. With the
advent of multicores, programmers are forced to exploit
parallelism [2] if they want to improve the performance of
their applications, or when they want to enable new
applications and services that were not possible earlier. One
approach for parallelization of a program is to rewrite it from
a scratch, however the most common way to parallelize a
program consider one piece at a time and each small step can
be considered as a behavior preserving transformation, i.e., a
refactoring. Every programmer prefers this approach because
it is safer: they prefer to maintain a working, deployable
version of the program. Also, the incremental approach is
more economical than rewriting. However, the refactoring
approach is still tedious because it requires changing many
lines of code is error-prone and is non-trivial because

programmers need to ensure noninterference of parallel
operations.

To reduce the programmer’s burden when converting
sequential to parallel programs, several tools have been
proposed. They come in two distinct flavors: (i) fully
automatic tools or non interactive tools (e.g., automatic
parallelizing compilers [4]–[7]) and (ii) interactive tools
(e.g., refactoring tools [8]–[15]). The fundamental difference
between these tools is the role of the programmer. A non-
interactive tool creates a parallel program automatically,
without any help from the programmer. When this works it
gives great results. Unfortunately, without programmer’s
domain knowledge, the compiler has limited applicability.
To date, the only compiler successes have been in programs
involving dense matrix operations and stencil computations.
Even though compilers have improved a lot, programmers
still parallelize by hand most of the code. Interactive tools
take a completely different approach: sometimes, less
automation is better! They let the programmer be in the
driver’s seat. The programmer is the expert on the problem
domain, and so understands the domain concepts amenable
to parallelism. The programmer also understands the current
sequential implementation: the program invariants that must
be preserved during parallelization, along with the data and
control flow relationships between parts of the program, and
the algorithms and data structures used in the current
implementation. Thus, the interactive approach combines the
strengths of the programmer (domain knowledge, seeing the
big picture) and the computers (fast search, remember, and
compute). The programmer does the creative part: selects
code and targets it with a transformation. The tool does the
tedious job: checks the safety (this involves searching in
many files, by traversing through many functions and
through aliased variables), and modifies the program. When
the tool cannot apply a transformation, it provides
information integrated within the visual interface of an
Integrated Development Environment (IDE), thus allowing a
programmer to pinpoint the problematic code.

A refactoring toolset for parallelism has several points of
interaction with the programmer, shown in below algorithm.

1. Start
2. Select code and a target refactoring
3. Apply tool, which can analyze the safety of the

transformation.
 If it is safe then apply the changes what you want to

make.
 If it is not safe then tool raises some warnings. The

programmer can decide to cancel the refactoring, fix the
code, then re-run the refactoring, or he can decide to
proceed against warnings.

4. Stop

We found that parallelizing transformations are not random,
but they fell into four categories.

1. Transformations that improve the latency (i.e., an
application feels more responsive).

2. Transformations that improve the throughput (i.e., more
computational tasks executed per unit of time).

Paper ID: 020132002 1167

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Transformations that improve the scalability (i.e., the
performance scales up when adding more cores), and

4. Transformations that improve thread safety (i.e.,
application behaves according to its specification even
when executed under multiple threads).

4. Refactoring tools for parallelism

When parallelizing a sequential program, a programmer
needs to

(i) Make the code thread-safe by protecting accesses to
mutable shared data,

(ii) Make the code run on multiple threads of execution, and
(iii) Make the performance scalable when adding more

cores.

Several authors advocate to first make the code right (i.e.,
thread-safe), then make it fast (i.e., multi-threaded), then
make it scalable. Our growing toolset currently automates
six refactorings, that fall into three categories. Refactorings
for thread-safety make a program thread-safe but do not
introduce multithreading yet. Refactorings for throughput
add multi-threading. Refactorings for scalability replace
existing data structures with highly scalable ones.

i. Refactorings for Thread-Safety

Before introducing multi-threading, the programmer needs to
prepare or enable the program for parallel execution. This
involves finding the mutable data that will be shared across
parallel executions. The programmer can decide to (i)
synchronize accesses to such data, or (ii) remove either its
mutability or sharedness. Below I present the refactoring for
converting a mutable into an immutable class.

How to make Class Immutable?
One way to make a whole class thread-safe is to make it
immutable. An immutable class is thread-safe by default,
because its state cannot be mutated once an object is
properly constructed. Thus, an immutable class can be
shared among several threads, with no need for
synchronization. Our refactoring enables the programmer to
convert a mutable class into an immutable class. To do so,
the tool makes the class and all its fields final, so that they
cannot be assigned outside constructors and field initializers.
The tool finds all mutator methods in the class, i.e., methods
that directly or indirectly mutate the internal state (as given
by its fields). The tool converts these mutator methods into
factory methods that return a new object whose state is the
old state plus the mutation.

 Next, the tool finds the objects that are entering from
outside (e.g., as method parameters) and become part of the
state, or objects that are part of the state and are escaping
(e.g., through return statements). It clones these objects, so
that the class state cannot be mutated by a client class who
holds a reference to these state objects. Lastly, the tool
updates the client code to use the class in an immutable
fashion. For example, when the client invokes a factory
method, the tool reassigns the reference to the immutable
class to the object returned by the factory method. Our

comparison with open-source classes that were manually
refactored for immutability shows that the tool is much safer:
it finds subtle mutations and entering/escaping objects that
programmers overlooked. However, not all classes can be
made immutable. For example, if a mutator method already
returns an object, the tool cannot convert it into a factory
method. Also, due to the extra overhead of copying state,
using this refactoring is advisable only when mutations are
not frequent.

ii. Refactorings for Throughput

Once a program is threadsafe, multi-threading can be used to
improve its performance. The programmer could manage
himself a raw thread (e.g., create, spawn, wait for results), or
he could use a programmer-friendlier construct, a lightweight
task, managed automatically by a framework. Our toolset
supports two such refactorings. One refactoring converts a
sequential divide-and-conquer algorithm into an algorithm
which solves the recursive subproblems in parallel. Another
refactoring parallelizes loops over arrays.

How to Parallelize a Loop?
This refactoring parallelizes loop iterations over an array via
ParallelArray [14], a parallel library upcoming in Java.
ParallelArray is an array data structure that supports parallel
operations over the array elements. For example, one can
apply a procedure to each element, or can reduce all
elements to a new element in parallel. The library balances
the load among the cores it finds at runtime. The refactoring
changes the data type of the array, and it replaces loops over
the array elements with the equivalent parallel operations
from ParallelArray. At the heart of the tool lies a data-flow
analysis that determines objects that are shared among loop
iterations, and detects writes to the shared objects. The
analysis works with both programs in source code and in
byte code. When the analysis finds writes to shared objects,
it presents the user a stack of code statements that resulted in
the objects being shared. These statements are hyper-linked
to the original source code, thus helping the developer to
find the problematic code.

Although we were able to refactor several real programs and
the analysis was fast and effective, not all loops can be
refactored. For example, a loop must (i) iterate over all the
array elements, (ii) not contain blocking I/O calls, and
(iii)not contain writes to shared objects.

iii. Refactorings for Scalability

One must not sacrifice thread-safety and correctness in the
name of performance. However, a naive synchronization
scheme can lead to serializing an application, thus drastically
reducing its scalability. This usually happens when working
with low-level synchronization constructs like locks. Locks
are the goto statements of parallel programming: they are
tedious to work with, and error prone. Too many locks slow
down or deadlock a program, while too few lead to data
races.
When possible, a better alternative is to use a highly scalable
data-structure provided by parallel libraries. However, this
refactoring is not always applicable, for example when an

Paper ID: 020132002 1168

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

application needs to lock the entire map for exclusive access
(e.g., for a whole traversal). Building this refactoring toolset
taught us several lessons:

i. Programmers often use parallel libraries, thus
refactoring tools need to support such libraries.

ii. To keep the programmer engaged, refactoring tools need
to finish in less than thirty seconds. Thus, they must use
efficient, on-demand program analyses.

iii. Program analysis libraries and IDEs with excellent AST
rewriting capabilities are essential for building
refactoring tools.

iv. Once a program is parallel, it must remain maintainable,
i.e., readable and portable.

v. Refactoring tools must interact with other tools in the
parallel toolbox.

5. Heterogeneous Parallel Architectures

Key issues include dealing with advanced heterogeneous
parallel architectures, involving combinations of GPUs and
CPUs; providing good hygienic abstractions that cleanly
separate components written in a variety of programming
languages; identifying new high level patterns of
parallelism; developing new rule based mechanisms for
rewriting (refactoring) source-level programs based on those
patterns etc. Why heterogeneous parallel architectures such
GPUs and CPUs has been chosen?

GPU:-
I. GPUs were designed in a highly parallel structure [16] that

allows large blocks of data to be processed at one time
similar computations are being made on data at the same
time (rather than in order). If you assigned the task of
rendering a 3D environment to a CPU, it would slow to a
crawl and handles requests more linearly, because GPUs
are better at performing repetitive tasks on large blocks of
data than CPUs, you start see the benefit of enlisting a
GPU in a server environment.

II. The GPU has emerged as a computational accelerator [17]
that dramatically reduces the time to discovery in High
End Computing (HEC). However, while today’s state of
the art GPU can easily reduce the execution time of a
parallel code by many orders of magnitude, it arguably
comes at the expense of significant power and energy
consumption.

Even though GPU has more benefits but why do we need to
use CPU, always it may not be the requirement to make all
segments of program needed to be parallelized, in those
situations better to use CPU because using of GPU is very
expensive as compare to CPU.

5.1 GPUs as Storage System Accelerators:

 Massively multicore processors [18], such as graphics
processing units (GPUs), provide, at a comparable price, a
one order of magnitude higher peak performance than
traditional CPUs. This drop in the cost of computation, as
any order of magnitude drop in the cost per unit of
performance for a class of system components, triggers the
opportunity to redesign systems and to explore new ways to

engineer them to recalibrate the cost-to-performance
relation.

5.2 Multi-core CPUs

Modern CPUs [19] are typically composed of a small
number of high-frequency processor cores with advanced
features such as out-of-order execution and branch
prediction. CPUs are generalists that perform well for a wide
variety of applications including latency-sensitive sequential
workloads, and coarse-grained task-parallel or data-parallel
workloads. Since they are typically used for latency sensitive
workloads with minimal parallelism, CPUs make extensive
use of large caches to hide main memory latency. Many
CPUs also incorporate small scale use of single-instruction
multiple-data (SIMD) arithmetic units to boost the
performance of dense arithmetic and multimedia workloads.
These SIMD units are not directly exposed by conventional
programming languages like C and Fortran, so their use
requires calling vectorized subroutine libraries or proprietary
vector intrinsic functions, or trial-and-error source level
restructuring and auto vectorizing compilers.

5.3 Graphics Processing Units

Contemporary GPUs are composed of hundreds of
processing units running at a low to moderate frequency,
designed for throughput-oriented latency insensitive
workloads. In order to hide global memory latency, GPUs
contain small or moderate sized on-chip caches, and they
make extensive use of hardware multithreading, executing
tens of thousands of threads concurrently across the pool of
processing units. The GPU processing units are typically
organized in SIMD clusters controlled by a single instruction
decoder, with shared access to fast on-chip caches and
shared memories. The SIMD clusters execute machine
instructions in lock-step, and branch divergence is handled
by executing both paths of the branch and masking off
results from inactive processing units as necessary. The use
of SIMD architecture and in-order execution of instructions
allows GPUs to contain a larger number of arithmetic units
in the same area as compared to traditional CPUs.

Although GPUs are powerful computing devices in their
own right, they must currently be managed by the host
CPUs. GPUs are typically attached to the host by a PCI-
Express bus, and in most cases have their own independent
on-board memory system. In order to exchange input and
output data with the GPU, the host CPU schedules DMA
transfers between the host and GPU memory systems.

Paper ID: 020132002 1169

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Dynamic Mapping

Figure 1: vision of refactoring for parallelism using
heterogeneous architectures

Aim is to produce a new structured design and
implementation process for heterogeneous parallel
architectures, where developers exploit a variety of parallel
patterns to develop component-based applications that can
be mapped to the available hardware resources, and which
may then be dynamically re-mapped to meet application
needs and hardware availability (Figure 1). We will exploit
new developments in the implementation of parallel patterns
that will allow us to express a variety of parallel algorithms
as compositions of lightweight software components forming
a collection of virtual parallel tasks. Components from
multiple applications will be instantiated and dynamically
allocated to the available hardware resources through a
simple and efficient software virtualization layer. In this
way, we will promote adaptivity, not only at an application
level, but also at a system level. Finally, virtualization
abstractions will be provided across the hardware
boundaries, allowing components to be dynamically re-
mapped to either CPU or GPU resources on the basis of
suitability and availability.

7. Conclusion

This Paper has described advantages of parallel programs
over sequential programs. Programmers are forced to exploit
parallelism if they want to improve the performance of their
applications, or when they want to enable new applications
and services that were not possible earlier. One approach for
parallelization of a program is to rewrite it from a scratch,
however the most common way to parallelize a program
consider one piece at a time and each small step can be
considered as a behavior preserving transformation, i.e., a
refactoring. It also described benefits of refactoring towards
parallelism and how the refactoring tools can be used to
achieve parallelism. The strong need for increased
computational performance in science and engineering has
led to the use of heterogeneous computing, This paper also
describes the how a refactoring approach can be used for
sequential programs and parallel programs using
homogeneous and heterogeneous parallel architectures such
as GPUs and CPUs.

References

[1] Mens, Tom and Tourwe, Tom (2004) A Survey of
Software Refactoring, IEEE Transactions on Software
Engineering, February 2004 (vol. 30 no. 2), pp. 126–
139.

[2] W. F. Opdyke, Refactoring: A Program Restructuring
Aid in Designing Object-Oriented Application
Frameworks Ph.D. thesis,University of Illinois at
Urbana Champaign, 1992.

[3] G. E. Moore. Readings in Computer Architecture.
Chapter Cramming more components On to integrated
circuits, pages 56–59. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2000.

[4] Netflix Prize Forum / Grand Prize Award.
http://www.netflixprize.com/
community/viewtopic.php?id=1537, Sept. 2009.

[5] M. Aldinucci and M. Danelutto. Stream Parallel
Skeleton Optimization. In Proc. Of PDCS: Intl.
Conference on Parallel and Distributed Computing and
Systems, pages 955–962, Cambridge, Massachusetts,
USA, Nov. 1999. IASTED, ACTA press.

[6] M. Aldinucci, M. Danelutto, P. Kilpatrick, M.
Meneghin, and M. Torquati. Accelerating Code on
Multi-cores with FastFlow. In Euro-Par, pages 170–181,
2011.

[7] J. Backus. Can Programming be Liberated from the von
Neumann Style? Communications of the ACM,
21(8):613–641, 1978.

[8] S. Benkner, S. Pllana, J. L. Tr¨aff, P. Tsigas, U.
Dolinsky, C. Augonnet, B. Bachmayer, C. W. Kessler,
D. Moloney, and V. Osipov. PEPPHER: Efficient and
Productive Usage of Hybrid Computing Systems. IEEE
Micro, 31(5):28–41, 2011.

[9] R. S. Bird. Lectures on Constructive Functional
Programming. In M. Broy, editor, Constructive Methods
in Computer Science, pages 151–218. Springer-Verlag,
1988.

[10]NATO ASI Series F Volume 55. Also available as
Technical Monograph PRG-69, from the Programming
Research Group, Oxford University.

[11]C. Brown, H. Li, and S. Thompson. An Expression
Processor: A Case Study in Refactoring Haskell
Programs. In R. Page, editor, Eleventh Symposium on
Trends in Functional Programming, page 15, May 2010.

[12]C. Brown, H. Loidl, and K. Hammond. Paraforming:
Forming Haskell Programs using Novel Refactoring
Techniques. In Twelth Symposium on Trends in
Functional Programming, Madrid, Spain, May 2011.

[13]R. M. Burstall and J. Darlington. A Transformation
System for Developing Recursive Programs. J. ACM,
24(1):44–67, 1977.

[14]F. Cesarini and S. Thompson. ERLANG Programming.
O’ReillyMedia, Inc., 1st edition, 2009.

[15]D. Dig. A Refactoring Approach to Parallelism. IEEE
Softw., 28:17–22, 2011.

[16]R. Gemulla, P. J. Haas, Y. Sismanis, C. Teflioudi, and
F. Makari. Large-Scale Matrix Factorization with
Distributed Stochastic Gradient Descent. In NIPS2011
Workshop on Big Learning. Sierra Nevada, Spain, Dec.
2011.

Paper ID: 020132002 1170

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[17]M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and
M Sarrafzadeh. Energy-Aware High Performance
Computing with Graphic Processing Units. In
Workshop on Power Aware Computing and System,
December 2008.

[18]Huang, Song, Shucai Xiao, and Wu-chun Feng. "On the
energy efficiency of graphics processing units for
scientific computing." Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009.

[19]Al-Kiswany, Samer. "Embracing diversity: optimizing
distributed storage systems for diverse deployment
environments." (2013).

[20]Stone, John E., David Gohara, and Guochun Shi.
"OpenCL: A parallel programming standard for
heterogeneous computing systems." Computing in
science & engineering 12.3 (2010): 66.

[21]Shi Guochun, Kindratenko Volodymyr, Pratas
Frederico, Trancoso Pedro, Gschwind Michael.
Application acceleration with the Cell broadband
engine. Computing in Science and Engineering.
2010;12(1):76–81.

[22]Cohen Jonathan, Garland Michael. Solving
computational problems with GPU computing.
Computing in Science and Engineering. 2009;11(5):58–
63.

[23]Bayoumi Amr, Chu Michael, Hanafy Yasser, Harrell
Patricia, Refai-Ahmed Gamal. Scientific and
engineering computing using ATI stream technology.
Computing in Science and Engineering. 2009;11(6):92–
97.

[24]Barker Kevin J, Davis Kei, Hoisie Adolfy, Kerbyson
Darren J, Lang Mike, Pakin Scott, Sancho Jose C. SC’
08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. Piscataway, NJ, USA: IEEE Press;
2008. Entering the petaflop era: the architecture and
performance of Roadrunner; pp. 1–11.

[25]Christopher Brown, Kevin Hammond, Marco Danelutto,
Peter Kilpatrick, Holger Sch¨oner, and Tino Breddin,
Paraphrasing: Generating Parallel Programs using
Refactoring, Springer Berlin Heidelberg pp. 237-
256,2013.

Paper ID: 020132002 1171

