
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Area and Delay Minimization of Radix-2k
Feedforward FFT Architecture

A. Salai Kishwar Jahan 1, A. Indhumathi 2

1, 2Mother Terasa College of Engineering & Technology, Illuppur, Pudukkottai, India

Abstract: The radix-2² was a milestone in the design of pipelined FFT hardware architectures. Later, radix-2 extended to radix-
216.However, radix-216 was only proposed for single path delay feedback (SFD) architectures, but not for feedforward, and also it called
multi path delay commutator (MDC) .The radix-216 feedforward Fast Fourier Transform architecture (FFT). In feedforward
architectures radix-216 can be used for any number of parallel samples which is a power of two. Furthermore, both decimation in
frequency (DIF) and decimation in time (DIT) decompositions can be used. In addition to this, the designs can achieve very high
throughputs and reduce the spare complexity, which make them suitable for the most demanding applications. Indeed, the proposed
radix-2k feedforward architectures require fewer hardware resources than parallel feedback ones, also called multi path delay feedback
(MDF), when several samples in parallel must be processed. As result, the proposed radix-216 feedforward architectures not only offer
an attractive solution for current applications, but also open up a new research line on feedforward structures.

Keywords: Fast Fourier Transform, Multi path delay feedback (MDF), Pipelined Architecture.

1. Introduction

The Fast Fourier transform (FFT) is one of the most
important algorithms in the field of digital signal processing.
It is used to calculate the discrete Fourier transform (DFT)
efficiently. These implementations can be mainly classified
into memory-based and pipeline architecture style. Memory-
based architecture is widely adopted to design, also known
as the single Processing Element (PE) approach. This design
style usually composed of a main PE and several memory
units, thus the hardware cost and power consumption are
both lower than the other architecture style. But
disadvantage is that it has long latency, long throughput and
it cannot be parallized. In order to meet the high
performance and real-time requirements of modern
applications, hardware designers have always tried to
implement efficient architectures for the computation of the
FFT.

For a pipelined FFT processor, each stage has its own set of
processing elements. All the stages are computed as soon as
data are available. Pipelined FFT processor have features
like simplicity, modularity and high throughput low
hardware complexity, and low power consumption. These
features are important for real-time, in-place applications
where the input data often arrive in a natural sequential
order. We therefore select the pipeline architecture for our
FFT processor implementation. Pipelined hardware
architecture [9], because they provide high throughputs and
low latencies suitable for real time, as well as a reasonably
low area and low power consumption. There are two main
types of pipelined architectures: feedback (FB) [14] and feed
forward (FF) [3]. On the one hand, feedback architectures
[14] are characterized by their feedback loops, i.e., some
outputs of the butterflies are fed back to the memories at the
same stage.

Feedback architectures can be divided into single-path delay
feedback (SDF)[1],[14] which process a continuous flow of
one sample per clock cycle, and multi-path delay feedback

(MDF) or parallel feedback[4], which process several
samples in parallel.

On the other hand, feed forward architectures also known as
multi-path delay commutator (MDC)[12], do not have
feedback loops and each stage passes the processed data to
the next stage. These architectures can also process several
samples in parallel. In current real-time applications, the FFT
has to be calculated at very high throughput rates, even in
the range of Giga samples per second. These high-
performance requirements appear in applications such as
orthogonal frequency division multiplexing (OFDM)[5] and
ultra wideband (UWB)[8],[13] .

Two main challenges can be distinguished. The first one is to
calculate the FFT of multiple independent data sequences. In
this case, all the FFT processors can share the rotation
memory in order to reduce the hardware. Designs that
manage a variable number of sequences can also be
obtained. The second challenge is to calculate the FFT when
several samples of the same sequence are received in
parallel. This must be done when the required throughput is
higher than the clock frequency of the device. In this case it
is necessary to resort to FFT architectures that can manage
several samples in parallel. However, radix-216 had not been
considered for feed forward architectures until the first
radix-22 feed forward FFT architectures were proposed a few
years ago. As a result, parallel feedback architectures
[4],[7],[15] which had not been considered for several
decades, have become very popular in the last few years.
Conversely, not very much attention has been paid to feed
forward (MDC) architectures. This paradoxical fact,
however, has simple explanation. Originally, SDF and MDC
architecture were proposed for radix-2[6] and radix-4[2].
Some years later, radix-2k was presented for the SDF[1],[12]
FFT improvement on radix-2 and radix-4[2]. Next, radix-23

and radix-23, which enable certain complex multipliers to be
simplified, were also presented for the SDF FFT. Finally, the
current need for high throughput has been meet by the MDF,
which includes multiple interconnected SDF paths in
parallel.

Paper ID: 020131854 562

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

The proposed architecture presents the Pipelined radix-216
feedforward FFT architectures. The proposed MDF
architecture can provide a higher throughput rate with
minimal hardware cost by combining the features of MDC
and SDF. The MDF architecture has lower hardware cost
compared with the traditional SDF approach and adopts the
radix-216 FFT architecture to reduce power dissipation.

2. Fast Fourier Transform

The Fast Fourier Transform algorithm exploit the two basic
properties of the twiddle factor - the symmetry property and
periodicity property which reduces the number of complex
multiplications required to perform DFT. FFT algorithms are
based on the fundamental principle of decomposing the
computation of discrete Fourier Transform of a sequence of
length N into successively smaller discrete Fourier
transforms. There are basically two classes of FFT
algorithms. Decimation in Time (DIT) algorithm and
Decimation in Frequency (DIF) algorithm. In decimation-in-
time, the sequence for which we need the DFT is
successively divided into smaller sequences and the DFTs of
these subsequences are combined in a certain pattern to
obtain the required DFT of the entire sequence. In the
decimation-in-frequency approach, the frequency samples of
the DFT are decomposed into smaller and smaller
subsequences in a similar manner. The number of complex
multiplication and addition operations required by the simple
forms both the Discrete Fourier Transform (DFT) and
Inverse Discrete Fourier Transform (IDFT) is of order N2 as
there are N data points to calculate, each of which requires N
complex arithmetic operations. The discrete Fourier
transform is defined by the (1)

;

2
1

0
)()(N

nKj
N

n
enxKX

 (1)

Where K is an integer ranging from 0 to N − 1.The
algorithmic complexity of DFT will O(N2) and hence is not a
very efficient method. If we can't do any better than this then
the DFT will not be very useful for the majority of practical
DSP application. However, there are a number of different
'Fast Fourier Transform' (FFT) algorithms that enable the
calculation the Fourier transform of a signal much faster than
a DFT. As the name suggests, FFTs are algorithms for quick
calculation of discrete Fourier transform of a data vector.
The FFT is a DFT algorithm which reduces the number of
computations needed for N points from O(N 2) to O(N log2
N) where log is the base-2 logarithm. If the function to be
transformed is not harmonically related to the sampling
frequency, the response of an FFT looks like a ‘sinc’
function (sin x) / x.

3. Radix-22 FFT Algorithm

The DFT of an input sequence is defined in (2)

;

2
1

0
)()(N

nKj
N

n
enxKX

 k =0,1….N-1 (2)

When N When is a power of two, the FFT based on Cooley-
Tukey algorithm is most commonly used in order to compute
the DFT efficiently. The Cooley-Tukey algorithm reduces
the number of operations from O(N2) for the DFT to O(N
log2 N) for the FFT. In accordance with this, the FFT is
calculated in a series n=logN of stages, where is the base
of the radix, r, of the FFT, i.e., r = . Flow graphs of 16-
point radix-2 and radix-22 using decimation in
frequency(DIF).The Comparison of Execution Times, DFT
& Radix – 2 FFT is tabulated in Table 1.At each stage of the
graphs, S€{1,…..,n}, butterflies and rotations have to be
calculated. The lower edges of the butterflies are always
multiplied by -1.These -1 are not depicted on order to
simplify the graphs. Flow graph of 16-point radix-2
represent in the Figure 1.The numbers at the input represent
the index of the input sequence, whereas those at the output
are the frequencies, k, of the output signal X[k] .Finally each
number, Φ, in between the stages indicates a rotation by (3)
As a consequence, samples for which Φ=0 do not need to
rotated likewise, if Φ € [0,N/4,N/2,3N/4] the samples must
be rotated by 0o,270o,180o and 90o which correspond to
complex multiplication by 1,-j,-1,j respectively. These
rotations are considered trivial, because they can be
performed by interchanging the real and imaginary
components and/or changing the sign of data.

 (3)

Table 1: Comparison of Execution Times, DFT & Radix- 2

Number
of Points,

N

Complex
Multiplications in

Direct computations,
N2

Complex
Multiplication in FFT
Algorithm, (N/2) log2

N

Speed
improvement

Factor

4 16 4 4.0
8 64 12 5.3

16 256 32 8.0
32 1024 80 12.8
64 4096 192 21.3
128 16384 448 36.6

Radix-22 is based on radix -2 and the flow graph of a radix-22
DIF FFT can be obtained from the graph of a radix-2 DIF
one. This This can be done by breaking down each angle Φ,
at odd stages into a trivial rotation and a non-trivial one, Φ’,
where Φ’= Φ mod N/4, and moving the latter to the
following stage. This is possible thanks to the fact that in the
radix-2 DIF FFT the rotation angles at the two inputs of
every butterfly, ΦA and ΦB , only differ by 0 or N/4. Thus, if
ΦA= Φ’ and ΦB= Φ’+N/4 , the rotation is moved to the
following stage. Where the first side of (4) represents the
computations using radix-2 and the second one using radix-
22, and being the input data of the butterfly.

In radix-2, A and B are rotated before the butterfly is
computed, whereas in radix-22 is rotated by the trivial
rotation –j before the butterfly, and the remaining rotation is
carried out after the butterfly. Consequently, rotations by Φ’
can be combined with those rotations of the following stage.

 (4)

Paper ID: 020131854 563

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Figure 1: Flow graph of the 16-point radix-2 DIF FFT

4. Radix-22 FFT Architectures

The proposed is based on analyzing the flow graph of the
FFT and extracting the properties of the algorithm. These
properties are requirements that any hardware architecture
that calculates the algorithm must fulfill. The properties of
the radix-22 FFT are shown in Table 2. The following
paragraphs explain these properties and how they are
obtained.The properties depend on the index of the data, I
bn-1,……, b1, b0 ,where (will be using throughput the paper
to relate both decimal and the binary representations of a
numbers.

On the one hand, the properties related to the butterfly
indicate which samples must be operated together in the
butterflies.This condition bn-s is both for DIF and DIT
decompositions and means that at any stage of the FFT,s,
butterflies operate in pairs of data whose indices differ only
in bit bn-s , where n= log2 N is the number of stages of the
FFT. In Figure 2 it can be observed that at the third
stage,s=3, data with indices I=12 1100 and I’=14 1110 are
processed together by a butterfly. These indices differ in bit
b1, bn-s which meets ,since n= log2 N= log2 16=4 and, thus,
bn-s= b4-3 = b1. On the other hand, there are two properties for
rotations. At odd stages of the radix-22 DIF FFT only those
samples whose index fulfills bn-s. bn-s-1=1 have to be rotated.
These rotations are trivial and the symbol (.) indicates the
logic AND function.

Table 2: Properties of the Radix-22 FFT algorithm for DIF
and DIT

Properties of Radix-22 DIF DIT
Butterflies bn-s bn-s

Trival Rotators(Odd s) bn-s. bn-s-1=1 bn-s.bn-s-1=1
Non-Trival Rotators (Even s) bn-s+1+ bn-s=1 bn-s-1+ bn-s-2=1

For the 16-point radix-22 FFT in Figure 2 only samples with
indices 12, 13, 14, and 15 must be rotated at the first stage.
For these indices b3.b2=1 is fulfilled, meeting the property bn-

s.bn-s-1=1, since n=4 and s=1 . Conversely, at even stages
rotations are non-trivial and they are calculated over indexed
data for which bn-s+1+ bn-s=1 , where the symbol (+) indicates
the logic OR function.

5. Radix Feedforward FFT Architecture

This section presents the radix-22 feedforward architectures
[3]. First, a 16-point and 4-parallel radix-22 feedforward FFT
architecture is explained in depth in order to clarify the
approach and Show how to analyze the architectures.Then,
radix-22 feedforward [11] architectures for different number
of parallel samples are presented. Figure 2 represent the 4-
parallel radix-8 feedforward [11] FFT architecture. The
architecture is made up of radix-2[6] butterflies (R2), non-
trivial rotators, trivial rotators, which are diamond- shaped,
and shuffling structures, which consist of buffers and
multiplexers. The lengths of the buffers are indicated by a
number. The architecture processes four samples in parallel
in a continuous flow. The order of the data at the different
stages is shown at the bottom of the figure 2 by their indices,
together with the bits bi that correspond to these indices. In
the horizontal, indexed samples arrive at the same terminal at
different time instants, whereas samples in the vertical arrive
at the same time at different terminals. Finally, samples flow
from left to right. Thus, indexed samples (0, 8, 4,12) arrive
in parallel at the inputs of the circuit at the first clock cycle,
whereas indexed samples (12, 13, 14, 15) arrive at
consecutive clock cycles at the lower input terminal. Taking
the previous considerations into account, the architecture can
be analyzed as follows. First, it can be observed that
butterflies always operate in pairs of samples whose indices
differ in bit bn-s, meeting the property in Table 2. For
instance, the pairs of data that arrive at the upper butterfly of
the first stage are: (0, 8), (1, 9), (2, 10), and (3, 11).The
binary representation of these pairs of numbers only differs
in b3. As n=4, and s=1 at the first stage,bn-8=b4-1=b3 , so the
condition is fulfilled. This property can also be checked for
the rest of the butterflies in a similar way that rotations at
odd stages are trivial and only affect samples whose indices
fulfill bn-s .bn-s-1=1.By particularizing this condition for the
first stage, b3. b2=1 is obtained. In the architecture shown in
Figure 2 the indices that fulfill this condition are those of the
lower edge and, thus, a trivial rotator is included at that edge.
On the other hand, the condition for non-trivial rotations at
even stages is bn-s+1 +bn-s=1,b3+b2=1, being for the second
stage. As b3+b2=0 for all indexed samples at the upper edge
of the second stage, this edge does not need any rotator.
Conversely, for the rest of edges b3+b2=1, so they include
non-trivial rotators.

Paper ID: 020131854 564

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Figure 2: Proposed 4-prellel Radix-2 feedforward

architecture for the computation of the 16-point DIF FFT

The rotation memories of the circuit store the coefficients Φ
of the flow graph. It can be seen that the coefficient
associated to each index is the same as that in the flow graph
of Figure 1.For instance, at the flow graph the sample with
index I = 14 has to be rotated by at the second stage. In the
architecture shown in Figure 3 the sample with index is the
third one that arrives at the lower edge of the second stage.
Thus, the third position of the rotation memory of the lower
rotator stores the coefficient for the angle Φ = 6.

Figure 3: Circuit for data shuffling

Thirdly, the buffers and multiplexers carry out data
shuffling. These circuits have already been used in previous
pipelined FFT architectures, and Figure 2 shows how they
work. For the first L clock cycles the multiplexers are set to
“0” L, being the length of the buffers. Thus, the first samples
from the upper path (set A) are stored in the output buffer
and the first samples from the lower path (set C) are stored in
the input buffer. Next, the multiplexer changes to “1”, so set
C passes to the output buffer and set D is stored in the input
buffer. At the same time, sets and are provided in parallel at
the output. When the multiplexer commutes again to “0”,
sets C and D are provided in parallel. As a result, sets B and
C are interchanged.Finally, the control of the circuit is very
simple: As the multiplexers commute every L clock cycles
and L is a power of two, the control signals of the
multiplexers are directly obtained from the bits of a counter,
in the proposed architectures the number of butterflies
depends on to the number of samples in parallel, P = 2p . For
any P parallel N -point FFT the number of butterflies is P/2
log2 N=P log4 N. Therefore, the number of complex adders
is 2P log4N . Likewise, the number of rotators is 3P/4 (log
4N-1). The only exception is for P=2. In this case, the
number of rotators is 2 (log4N-1) .The proposed architectures
can process a continuous flow of data. The throughput in

samples per clock cycle number of samples in parallel P=2p ,
whereas the latency is proportional to the size of the FFT
divided by the number of parallel samples, i.e. N/P, . Thus,
the most suitable architecture for a given application can be
selected by considering the throughput and latency that the
application demands. Indeed, the number of parallel samples
can be increased arbitrarily, which assures that the most
demanding requirements are met. Finally, the memory size
does not increase with the number of parallel samples. For
the architectures shown in, the shuffling structure at any
stage s € [p,n – 1] requires P=2p buffers of length L=N/2s+1.
According to this, the total sample memory of the
architectures is represented in (5)

1

1

1

2
2

2.2
2N

PS

P

s

NLog

PS

pP PNN
N

L (5)

Therefore, a total sample memory of N addresses is enough
for the computation of an N-point FFT independently of the
degree of parallelism of the FFT. Indeed, the total memory
of N-P addresses that the proposed architectures require is
the minimum amount of memory for an N-point P-parallel
FFT.

6. Experimental Results

The presented architectures have been programmed for the
use in field-programmable gate arrays (FPGAs).The designs
are parameterizable in the number of points, word length,
and number of samples in parallel. Table 3 shows post-place
and route results for different configurations of N and P=4,
using a word length of 16 bits. The target FPGA is a Virtex-
5 FPGA, XC3S500E. In the proposed designs these blocks
have been used to implement complex multipliers that carry
out the rotation of the FFT. Figure 4 compares the area of the
proposed architectures to other equivalent high-throughput
pipelined FFTs architectures for the same FPGA and
synthesis conditions. Full streaming architectures (FS) have
been generated using the tool presented, which provides
optimized pipelined architectures for a given radix and
number of parallel samples. The results for 4-parallel
pipelined architectures are shown in Figure 2 In the figure 4,
the numbers next to the lines indicate the amount slices that
each architecture requires. It can be observed that the
proposed radix- architectures require less area than previous
designs for any FFT size, this improvement increases with
the size of the FFT.

Table 3: Area and Performance Of The Proposed 4-Parallel

N Point Radix-2 Feedforward FFT Architectures
FFT Area Latency

(ns)
Freq.

(MHz)
Throughput

(MS/s) P=4
N

Slices

16 386 26 458 1831
64 695 81 389 1554

256 1024 221 384 1536
1024 1425 1055 270 1081
4096 2388 6120 173 693

Paper ID: 020131854 565

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Figure 4: Area of 4-parallel pipelined FFT Architecture

7. Conclusion

This study extends the use of radix-2 to feedforward (MDC)
FFT architectures. Indeed, it is shown that feedforward
structures are more efficient than feedback ones when
several samples in parallel must be processed. In
feedforward architectures radix-2 can be used for any
number of parallel samples which is a power of two. Indeed,
the number of parallel samples can be chosen arbitrarily
depending of the throughput that is required. Additionally,
both DIF and DIT decompositions can be used. Finally,
experimental results show that the designs are efficient both
in area and performance, being possible to obtain
throughputs of the order of GigaSamples/s as well as very
low latencies.

References

[1] Cortés, I. Vélez, and J. F. Sevillano, “Radix FFTs:
Matricial representation and SDC/SDF pipeline
implementation,” IEEE Trans.Signal Process., vol. 57,
no. 7, pp. 2824–2839, Jul. 2009.

[2] A. M. Despain, “Fourier transform computers using
CORDIC iterations,” IEEE Trans. Comput., vol. C-23,
pp. 993–1001, Oct. 1974.

[3] C. Cheng and K.K. Parhi, “High-throughputVLSI
architecture for FFT computation,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 54, no. 10,pp. 863–867, Oct.
2007.

[4] E. H. Wold and A. M. Despain, “Pipeline and parallel-
pipeline FFT processors for VLSI implementations,”
IEEE Trans. Comput., vol.C-33, no. 5, pp. 414–426,
May 1984.

[5] H. Liu and H. Lee, “A high performance four-parallel
128/64-point radix- FFT/IFFT processor for MIMO-
OFDM systems,” in Proc.IEEE Asia Pacific Conf.
Circuits Syst., 2008, pp. 834–837.

[6] H. L. Groginsky and G. A.Works, “A pipeline fast
Fourier transform,” IEEE Trans. Comput., vol. C-19, no.
11, pp. 1015–1019, Oct. 1970.

[7] J. Lee, H. Lee, S. I. Cho, and S.-S. Choi, “A high-speed,
low-complexity radix- FFT processor for MB-OFDM
UWB systems,” in Proc. IEEE Int. Symp. Circuits Syst.,
2006, pp. 210–213.

[8] L. Liu, J. Ren, X. Wang, and F. Ye, “Design of low-
power, 1 GS/s throughput FFT processor for MIMO-
OFDM UWB communication system,” in Proc. IEEE
Int. Symp. Circuits Syst., 2007, pp. 2594–2597.

[9] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang,
“An efficient locally pipelined FFT processor,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp.
585–589, Jul. 2006.

[10] M. A. Sánchez, M. Garrido,M. L. López, and J. Grajal,
“Implementing FFT-based digital channelized receivers
on FPGA platforms,” IEEE Trans. Aerosp. Electron.
Syst., vol. 44, no. 4, pp. 1567–1585, Oct. 2008.

[11] N. Li and N. P. van der Meijs, “A radix based parallel
pipeline FFT processor for MB-OFDM UWB system,”
in Proc. IEEE Int. SOC Conf., 2009, pp. 383–386.

[12] S. He and M. Torkelson, “Design and implementation
of a 1024-point pipeline FFT processor,” in Proc. IEEE
Custom Integr. Circuits Conf., 1998, pp. 131–134.

[13] S.-I. Cho, K.-M. Kang, and S.-S. Choi, “Implemention
of 128-point fast Fourier transform processor for UWB
systems,” in Proc. Int.Wirel. Commun. Mobile Comput.
Conf., 2008, pp. 210–213.

[14] W. Xudong and L. Yu, “Special-purpose computer for
64-point FFT based on FPGA,” in Proc. Int. Conf.
Wirel. Commun. Signal Process. 2009, pp. 1–3.

[15]S.-N. Tang, J.-W. Tsai and T.-Y. Chang, “A 2.4-GS/s
FFT processor for OFDM-based WPAN applications,”
IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 57, no. 6,
pp. 451–455, Jun. 2010.

Author Profile

A. Salai Kishwar Jahan received the Under Graduate
Electronics & Communication Engineering from
Mount Zion College of Engineering & Technology,
India at 2012.Pursuing M.E, VLSI Design in Mother
Terasa College Of Engineering Technology, India at

2014. Her field of interest includes VLSI and Digital Signal
Process.

A. Indhumathi received the Under Graduate in
Electronics & Communication Engineering from
Shanmuganathan Engineering College, India at 2006.
Post Graduate Communication System from
Sudharsan Engineering College, India at 2010. Her

field of interest includes VLSI and Digital Signal Process.

Paper ID: 020131854 566

