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Abstract: The radix-2² was a milestone in the design of pipelined FFT hardware architectures. Later, radix-2 extended to radix-
216.However, radix-216 was only proposed for single path delay feedback (SFD) architectures, but not for feedforward, and also it called 
multi path delay commutator (MDC) .The radix-216 feedforward Fast Fourier Transform architecture (FFT). In feedforward 
architectures radix-216 can be used for any number of parallel samples which is a power of two. Furthermore, both decimation in 
frequency (DIF) and decimation in time (DIT) decompositions can be used. In addition to this, the designs can achieve very high
throughputs and reduce the spare complexity, which make them suitable for the most demanding applications. Indeed, the proposed
radix-2k feedforward architectures require fewer hardware resources than parallel feedback ones, also called multi path delay feedback 
(MDF), when several samples in parallel must be processed. As result, the proposed radix-216 feedforward architectures not only offer 
an attractive solution for current applications, but also open up a new research line on feedforward structures. 

Keywords: Fast Fourier Transform, Multi path delay feedback (MDF), Pipelined Architecture.

1. Introduction
 
The Fast Fourier transform (FFT) is one of the most 
important algorithms in the field of digital signal processing. 
It is used to calculate the discrete Fourier transform (DFT) 
efficiently. These implementations can be mainly classified 
into memory-based and pipeline architecture style. Memory-
based architecture is widely adopted to design, also known 
as the single Processing Element (PE) approach. This design 
style usually composed of a main PE and several memory 
units, thus the hardware cost and power consumption are 
both lower than the other architecture style. But 
disadvantage is that it has long latency, long throughput and 
it cannot be parallized. In order to meet the high 
performance and real-time requirements of modern 
applications, hardware designers have always tried to 
implement efficient architectures for the computation of the 
FFT. 
 
For a pipelined FFT processor, each stage has its own set of 
processing elements. All the stages are computed as soon as 
data are available. Pipelined FFT processor have features 
like simplicity, modularity and high throughput low 
hardware complexity, and low power consumption. These 
features are important for real-time, in-place applications 
where the input data often arrive in a natural sequential 
order. We therefore select the pipeline architecture for our 
FFT processor implementation. Pipelined hardware 
architecture [9], because they provide high throughputs and 
low latencies suitable for real time, as well as a reasonably 
low area and low power consumption. There are two main 
types of pipelined architectures: feedback (FB) [14] and feed 
forward (FF) [3]. On the one hand, feedback architectures 
[14] are characterized by their feedback loops, i.e., some 
outputs of the butterflies are fed back to the memories at the 
same stage.  
 
Feedback architectures can be divided into single-path delay 
feedback (SDF)[1],[14] which process a continuous flow of 
one sample per clock cycle, and multi-path delay feedback 

(MDF) or parallel feedback[4], which process several 
samples in parallel.  
 
On the other hand, feed forward architectures also known as 
multi-path delay commutator (MDC)[12], do not have 
feedback loops and each stage passes the processed data to 
the next stage. These architectures can also process several 
samples in parallel. In current real-time applications, the FFT 
has to be calculated at very high throughput rates, even in 
the range of Giga samples per second. These high-
performance requirements appear in applications such as 
orthogonal frequency division multiplexing (OFDM)[5] and 
ultra wideband (UWB)[8],[13] . 
 
Two main challenges can be distinguished. The first one is to 
calculate the FFT of multiple independent data sequences. In 
this case, all the FFT processors can share the rotation 
memory in order to reduce the hardware. Designs that 
manage a variable number of sequences can also be 
obtained. The second challenge is to calculate the FFT when 
several samples of the same sequence are received in 
parallel. This must be done when the required throughput is 
higher than the clock frequency of the device. In this case it 
is necessary to resort to FFT architectures that can manage 
several samples in parallel. However, radix-216 had not been 
considered for feed forward architectures until the first 
radix-22 feed forward FFT architectures were proposed a few 
years ago. As a result, parallel feedback architectures 
[4],[7],[15] which had not been considered for several 
decades, have become very popular in the last few years. 
Conversely, not very much attention has been paid to feed 
forward (MDC) architectures. This paradoxical fact, 
however, has simple explanation. Originally, SDF and MDC 
architecture were proposed for radix-2[6] and radix-4[2]. 
Some years later, radix-2k was presented for the SDF[1],[12] 
FFT improvement on radix-2 and radix-4[2]. Next, radix-23

and radix-23, which enable certain complex multipliers to be 
simplified, were also presented for the SDF FFT. Finally, the 
current need for high throughput has been meet by the MDF, 
which includes multiple interconnected SDF paths in 
parallel. 
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The proposed architecture presents the Pipelined radix-216 
feedforward FFT architectures. The proposed MDF 
architecture can provide a higher throughput rate with 
minimal hardware cost by combining the features of MDC 
and SDF. The MDF architecture has lower hardware cost 
compared with the traditional SDF approach and adopts the 
radix-216 FFT architecture to reduce power dissipation.  
 
2. Fast Fourier Transform 
 
The Fast Fourier Transform algorithm exploit the two basic 
properties of the twiddle factor - the symmetry property and 
periodicity property which reduces the number of complex 
multiplications required to perform DFT. FFT algorithms are 
based on the fundamental principle of decomposing the 
computation of discrete Fourier Transform of a sequence of 
length N into successively smaller discrete Fourier 
transforms. There are basically two classes of FFT 
algorithms. Decimation in Time (DIT) algorithm and 
Decimation in Frequency (DIF) algorithm. In decimation-in-
time, the sequence for which we need the DFT is 
successively divided into smaller sequences and the DFTs of 
these subsequences are combined in a certain pattern to 
obtain the required DFT of the entire sequence. In the 
decimation-in-frequency approach, the frequency samples of 
the DFT are decomposed into smaller and smaller 
subsequences in a similar manner. The number of complex 
multiplication and addition operations required by the simple 
forms both the Discrete Fourier Transform (DFT) and 
Inverse Discrete Fourier Transform (IDFT) is of order N2 as 
there are N data points to calculate, each of which requires N 
complex arithmetic operations. The discrete Fourier 
transform is defined by the (1)  
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Where K is an integer ranging from 0 to N − 1.The 
algorithmic complexity of DFT will O(N2) and hence is not a 
very efficient method. If we can't do any better than this then 
the DFT will not be very useful for the majority of practical 
DSP application. However, there are a number of different 
'Fast Fourier Transform' (FFT) algorithms that enable the 
calculation the Fourier transform of a signal much faster than 
a DFT. As the name suggests, FFTs are algorithms for quick 
calculation of discrete Fourier transform of a data vector. 
The FFT is a DFT algorithm which reduces the number of 
computations needed for N points from O(N 2) to O(N log2 
N) where log is the base-2 logarithm. If the function to be 
transformed is not harmonically related to the sampling 
frequency, the response of an FFT looks like a ‘sinc’ 
function (sin x) / x.  
 
3. Radix-22 FFT Algorithm
 
The DFT of an input sequence is defined in (2) 
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 k =0,1….N-1               (2)  

 

When N When is a power of two, the FFT based on Cooley-
Tukey algorithm is most commonly used in order to compute 
the DFT efficiently. The Cooley-Tukey algorithm reduces 
the number of operations from O(N2) for the DFT to O(N 
log2 N) for the FFT. In accordance with this, the FFT is 
calculated in a series n=logN of stages, where  is the base 
of the radix, r, of the FFT, i.e., r =  . Flow graphs of 16-
point radix-2 and radix-22 using decimation in 
frequency(DIF).The Comparison of Execution Times, DFT 
& Radix – 2 FFT is tabulated in Table 1.At each stage of the 
graphs, S€{1,…..,n}, butterflies and rotations have to be 
calculated. The lower edges of the butterflies are always 
multiplied by -1.These -1 are not depicted on order to 
simplify the graphs. Flow graph of 16-point radix-2 
represent in the Figure 1.The numbers at the input represent 
the index of the input sequence, whereas those at the output 
are the frequencies, k, of the output signal X[k] .Finally each 
number, Φ, in between the stages indicates a rotation by (3) 
As a consequence, samples for which Φ=0 do not need to 
rotated likewise, if Φ € [0,N/4,N/2,3N/4] the samples must 
be rotated by 0o,270o,180o and 90o which correspond to 
complex multiplication by 1,-j,-1,j respectively. These 
rotations are considered trivial, because they can be 
performed by interchanging the real and imaginary 
components and/or changing the sign of data.  
 

                                                           (3)  

Table 1: Comparison of Execution Times, DFT & Radix- 2 

Number 
of Points,

N 

Complex 
Multiplications in 

Direct computations, 
N2 

Complex 
Multiplication in FFT 
Algorithm, (N/2) log2 

N 

Speed 
improvement 

Factor 

4 16 4 4.0 
8 64 12 5.3 

16 256 32 8.0 
32 1024 80 12.8 
64 4096 192 21.3 
128 16384 448 36.6 

   
Radix-22 is based on radix -2 and the flow graph of a radix-22 
DIF FFT can be obtained from the graph of a radix-2 DIF 
one. This This can be done by breaking down each angle Φ, 
at odd stages into a trivial rotation and a non-trivial one, Φ’, 
where Φ’= Φ mod N/4, and moving the latter to the 
following stage. This is possible thanks to the fact that in the 
radix-2 DIF FFT the rotation angles at the two inputs of 
every butterfly, ΦA and ΦB , only differ by 0 or N/4. Thus, if 
ΦA= Φ’ and ΦB= Φ’+N/4 , the rotation is moved to the 
following stage. Where the first side of (4) represents the 
computations using radix-2 and the second one using radix-
22, and being the input data of the butterfly.  
 
In radix-2, A and B are rotated before the butterfly is 
computed, whereas in radix-22 is rotated by the trivial 
rotation –j before the butterfly, and the remaining rotation is 
carried out after the butterfly. Consequently, rotations by Φ’ 
can be combined with those rotations of the following stage. 
 

                     (4) 
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Figure 1: Flow graph of the 16-point radix-2 DIF FFT 

 
4. Radix-22 FFT Architectures 
 
The proposed is based on analyzing the flow graph of the 
FFT and extracting the properties of the algorithm. These 
properties are requirements that any hardware architecture 
that calculates the algorithm must fulfill. The properties of 
the radix-22 FFT are shown in Table 2. The following 
paragraphs explain these properties and how they are 
obtained.The properties depend on the index of the data, I  
bn-1,……, b1, b0 ,where (  will be using throughput the paper 
to relate both decimal and the binary representations of a 
numbers. 
 
On the one hand, the properties related to the butterfly 
indicate which samples must be operated together in the 
butterflies.This condition bn-s is both for DIF and DIT 
decompositions and means that at any stage of the FFT,s, 
butterflies operate in pairs of data whose indices differ only 
in bit bn-s , where n= log2 N is the number of stages of the 
FFT. In Figure 2 it can be observed that at the third 
stage,s=3, data with indices I=12 1100 and I’=14 1110 are 
processed together by a butterfly. These indices differ in bit 
b1, bn-s which meets ,since n= log2 N= log2 16=4 and, thus, 
bn-s= b4-3 = b1. On the other hand, there are two properties for 
rotations. At odd stages of the radix-22 DIF FFT only those 
samples whose index fulfills bn-s. bn-s-1=1 have to be rotated. 
These rotations are trivial and the symbol (.) indicates the 
logic AND function. 
 

Table 2: Properties of the Radix-22 FFT algorithm for DIF 
and DIT 

Properties of Radix-22 DIF DIT 
Butterflies bn-s bn-s 

Trival Rotators(Odd s) bn-s. bn-s-1=1 bn-s.bn-s-1=1
Non-Trival Rotators (Even s) bn-s+1+ bn-s=1 bn-s-1+ bn-s-2=1

 

For the 16-point radix-22 FFT in Figure 2 only samples with 
indices 12, 13, 14, and 15 must be rotated at the first stage. 
For these indices b3.b2=1 is fulfilled, meeting the property bn-

s.bn-s-1=1, since n=4 and s=1 . Conversely, at even stages 
rotations are non-trivial and they are calculated over indexed 
data for which bn-s+1+ bn-s=1 , where the symbol (+) indicates 
the logic OR function. 
 

5. Radix Feedforward FFT Architecture 
 
This section presents the radix-22 feedforward architectures 
[3]. First, a 16-point and 4-parallel radix-22 feedforward FFT 
architecture is explained in depth in order to clarify the 
approach and Show how to analyze the architectures.Then, 
radix-22 feedforward [11] architectures for different number 
of parallel samples are presented. Figure 2 represent the 4-
parallel radix-8 feedforward [11] FFT architecture. The 
architecture is made up of radix-2[6] butterflies (R2), non-
trivial rotators, trivial rotators, which are diamond- shaped, 
and shuffling structures, which consist of buffers and 
multiplexers. The lengths of the buffers are indicated by a 
number. The architecture processes four samples in parallel 
in a continuous flow. The order of the data at the different 
stages is shown at the bottom of the figure 2 by their indices, 
together with the bits bi that correspond to these indices. In 
the horizontal, indexed samples arrive at the same terminal at 
different time instants, whereas samples in the vertical arrive 
at the same time at different terminals. Finally, samples flow 
from left to right. Thus, indexed samples (0, 8, 4,12) arrive 
in parallel at the inputs of the circuit at the first clock cycle, 
whereas indexed samples (12, 13, 14, 15) arrive at 
consecutive clock cycles at the lower input terminal. Taking 
the previous considerations into account, the architecture can 
be analyzed as follows. First, it can be observed that 
butterflies always operate in pairs of samples whose indices 
differ in bit bn-s, meeting the property in Table 2. For 
instance, the pairs of data that arrive at the upper butterfly of 
the first stage are: (0, 8), (1, 9), (2, 10), and (3, 11).The 
binary representation of these pairs of numbers only differs 
in b3. As n=4, and s=1 at the first stage,bn-8=b4-1=b3 , so the 
condition is fulfilled. This property can also be checked for 
the rest of the butterflies in a similar way that rotations at 
odd stages are trivial and only affect samples whose indices 
fulfill bn-s .bn-s-1=1.By particularizing this condition for the 
first stage, b3. b2=1 is obtained. In the architecture shown in 
Figure 2 the indices that fulfill this condition are those of the 
lower edge and, thus, a trivial rotator is included at that edge. 
On the other hand, the condition for non-trivial rotations at 
even stages is bn-s+1 +bn-s=1,b3+b2=1, being for the second 
stage. As b3+b2=0 for all indexed samples at the upper edge 
of the second stage, this edge does not need any rotator. 
Conversely, for the rest of edges b3+b2=1, so they include 
non-trivial rotators. 
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Figure 2: Proposed 4-prellel Radix-2 feedforward 

architecture for the computation of the 16-point DIF FFT 
 
The rotation memories of the circuit store the coefficients Φ 
of the flow graph. It can be seen that the coefficient 
associated to each index is the same as that in the flow graph 
of Figure 1.For instance, at the flow graph the sample with 
index I = 14 has to be rotated by at the second stage. In the 
architecture shown in Figure 3 the sample with index is the 
third one that arrives at the lower edge of the second stage. 
Thus, the third position of the rotation memory of the lower 
rotator stores the coefficient for the angle Φ = 6. 
 

 
Figure 3: Circuit for data shuffling 

  
Thirdly, the buffers and multiplexers carry out data 
shuffling. These circuits have already been used in previous 
pipelined FFT architectures, and Figure 2 shows how they 
work. For the first L clock cycles the multiplexers are set to 
“0” L, being the length of the buffers. Thus, the first samples 
from the upper path (set A) are stored in the output buffer 
and the first samples from the lower path (set C) are stored in 
the input buffer. Next, the multiplexer changes to “1”, so set 
C passes to the output buffer and set D is stored in the input 
buffer. At the same time, sets and are provided in parallel at 
the output. When the multiplexer commutes again to “0”, 
sets C and D are provided in parallel. As a result, sets B and 
C are interchanged.Finally, the control of the circuit is very 
simple: As the multiplexers commute every L clock cycles 
and L is a power of two, the control signals of the 
multiplexers are directly obtained from the bits of a counter, 
in the proposed architectures the number of butterflies 
depends on to the number of samples in parallel, P = 2p . For 
any P parallel N -point FFT the number of butterflies is P/2 
log2 N=P log4 N. Therefore, the number of complex adders 
is 2P log4N . Likewise, the number of rotators is 3P/4 (log 
4N-1). The only exception is for P=2. In this case, the 
number of rotators is 2 (log4N-1) .The proposed architectures 
can process a continuous flow of data. The throughput in 

samples per clock cycle number of samples in parallel P=2p , 
whereas the latency is proportional to the size of the FFT 
divided by the number of parallel samples, i.e. N/P, . Thus, 
the most suitable architecture for a given application can be 
selected by considering the throughput and latency that the 
application demands. Indeed, the number of parallel samples 
can be increased arbitrarily, which assures that the most 
demanding requirements are met. Finally, the memory size 
does not increase with the number of parallel samples. For 
the architectures shown in, the shuffling structure at any 
stage s € [p,n – 1] requires P=2p buffers of length L=N/2s+1. 
According to this, the total sample memory of the 
architectures is represented in (5) 
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Therefore, a total sample memory of N addresses is enough 
for the computation of an N-point FFT independently of the 
degree of parallelism of the FFT. Indeed, the total memory 
of N-P addresses that the proposed architectures require is 
the minimum amount of memory for an N-point P-parallel 
FFT.  
 

6. Experimental Results 
 
The presented architectures have been programmed for the 
use in field-programmable gate arrays (FPGAs).The designs 
are parameterizable in the number of points, word length, 
and number of samples in parallel. Table 3 shows post-place 
and route results for different configurations of N and P=4, 
using a word length of 16 bits. The target FPGA is a Virtex-
5 FPGA, XC3S500E. In the proposed designs these blocks 
have been used to implement complex multipliers that carry 
out the rotation of the FFT. Figure 4 compares the area of the 
proposed architectures to other equivalent high-throughput 
pipelined FFTs architectures for the same FPGA and 
synthesis conditions. Full streaming architectures (FS) have 
been generated using the tool presented, which provides 
optimized pipelined architectures for a given radix and 
number of parallel samples. The results for 4-parallel 
pipelined architectures are shown in Figure 2 In the figure 4, 
the numbers next to the lines indicate the amount slices that 
each architecture requires. It can be observed that the 
proposed radix- architectures require less area than previous 
designs for any FFT size, this improvement increases with 
the size of the FFT. 
 
Table 3: Area and Performance Of The Proposed 4-Parallel 

N Point Radix-2 Feedforward FFT Architectures 
FFT Area Latency 

(ns) 
Freq. 

(MHz) 
Throughput 

(MS/s) P=4 
N 

Slices 

16 386 26 458 1831 
64 695 81 389 1554 

256 1024 221 384 1536 
1024 1425 1055 270 1081 
4096 2388 6120 173 693 
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Figure 4: Area of 4-parallel pipelined FFT Architecture 

 
7. Conclusion
 
This study extends the use of radix-2 to feedforward (MDC) 
FFT architectures. Indeed, it is shown that feedforward 
structures are more efficient than feedback ones when 
several samples in parallel must be processed. In 
feedforward architectures radix-2 can be used for any 
number of parallel samples which is a power of two. Indeed, 
the number of parallel samples can be chosen arbitrarily 
depending of the throughput that is required. Additionally, 
both DIF and DIT decompositions can be used. Finally, 
experimental results show that the designs are efficient both 
in area and performance, being possible to obtain 
throughputs of the order of GigaSamples/s as well as very 
low latencies. 
 
References

[1] Cortés, I. Vélez, and J. F. Sevillano, “Radix FFTs: 
Matricial representation and SDC/SDF pipeline 
implementation,” IEEE Trans.Signal Process., vol. 57, 
no. 7, pp. 2824–2839, Jul. 2009. 

[2] A. M. Despain, “Fourier transform computers using 
CORDIC iterations,” IEEE Trans. Comput., vol. C-23, 
pp. 993–1001, Oct. 1974. 

[3] C. Cheng and K.K. Parhi, “High-throughputVLSI 
architecture for FFT computation,” IEEE Trans. Circuits 
Syst. II, Exp. Briefs, vol. 54, no. 10,pp. 863–867, Oct. 
2007. 

[4] E. H. Wold and A. M. Despain, “Pipeline and parallel-
pipeline FFT processors for VLSI implementations,” 
IEEE Trans. Comput., vol.C-33, no. 5, pp. 414–426, 
May 1984. 

[5] H. Liu and H. Lee, “A high performance four-parallel 
128/64-point radix- FFT/IFFT processor for MIMO-
OFDM systems,” in Proc.IEEE Asia Pacific Conf. 
Circuits Syst., 2008, pp. 834–837. 

[6] H. L. Groginsky and G. A.Works, “A pipeline fast 
Fourier transform,” IEEE Trans. Comput., vol. C-19, no. 
11, pp. 1015–1019, Oct. 1970. 

[7] J. Lee, H. Lee, S. I. Cho, and S.-S. Choi, “A high-speed, 
low-complexity radix- FFT processor for MB-OFDM 
UWB systems,” in Proc. IEEE Int. Symp. Circuits Syst., 
2006, pp. 210–213. 

[8] L. Liu, J. Ren, X. Wang, and F. Ye, “Design of low-
power, 1 GS/s throughput FFT processor for MIMO-
OFDM UWB communication system,” in Proc. IEEE 
Int. Symp. Circuits Syst., 2007, pp. 2594–2597. 

[9] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, 
“An efficient locally pipelined FFT processor,” IEEE 
Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp. 
585–589, Jul. 2006. 

[10]  M. A. Sánchez, M. Garrido,M. L. López, and J. Grajal, 
“Implementing FFT-based digital channelized receivers 
on FPGA platforms,” IEEE Trans. Aerosp. Electron. 
Syst., vol. 44, no. 4, pp. 1567–1585, Oct. 2008. 

[11]  N. Li and N. P. van der Meijs, “A radix based parallel 
pipeline FFT processor for MB-OFDM UWB system,” 
in Proc. IEEE Int. SOC Conf., 2009, pp. 383–386. 

[12]  S. He and M. Torkelson, “Design and implementation 
of a 1024-point pipeline FFT processor,” in Proc. IEEE 
Custom Integr. Circuits Conf., 1998, pp. 131–134. 

[13]  S.-I. Cho, K.-M. Kang, and S.-S. Choi, “Implemention 
of 128-point fast Fourier transform processor for UWB 
systems,” in Proc. Int.Wirel. Commun. Mobile Comput. 
Conf., 2008, pp. 210–213. 

[14]  W. Xudong and L. Yu, “Special-purpose computer for 
64-point FFT based on FPGA,” in Proc. Int. Conf. 
Wirel. Commun. Signal Process. 2009, pp. 1–3. 

[15]S.-N. Tang, J.-W. Tsai and T.-Y. Chang, “A 2.4-GS/s 
FFT processor for OFDM-based WPAN applications,” 
IEEE Trans. Circuits Syst. I,Reg. Papers, vol. 57, no. 6, 
pp. 451–455, Jun. 2010. 
 

Author Profile 

A. Salai Kishwar Jahan received the Under Graduate 
Electronics & Communication Engineering from 
Mount Zion College of Engineering & Technology, 
India at 2012.Pursuing M.E, VLSI Design in Mother 
Terasa College Of Engineering Technology, India at 

2014. Her field of interest includes VLSI and Digital Signal 
Process. 
 

A. Indhumathi received the Under Graduate in 
Electronics & Communication Engineering from 
Shanmuganathan Engineering College, India at 2006. 
Post Graduate Communication System from 
Sudharsan Engineering College, India at 2010. Her 

field of interest includes VLSI and Digital Signal Process.  

Paper ID: 020131854 566




